1. my goal is to make a 🗄️table comparing the models on process from each paper.[[Space/Sources/Lab/📜Kauffman22_theory_of_adj_possible]]
2. from Kauffman Theory of the Adjacent Possible.pdf "we note that Steel et al.’s stochastic implementation from Steel20_BDproc_comb_innov.pdf is not a discretisation of the TAP equation itself, because it requires a calculational timestep to be small to keep the creation probabilities below unity; it is a stochastic discretization of a continuum approximation to the original equation. Their numerical analysis also makes the further assumption of a fixed upper limit (usually i max= 4) in the summation."
3. based on 1 and 2, my ultimate goal is to support or falsify my hypothesis. My hypothesis is inherent need to consider discretization time in continuous approximation simulation (e.g. Forrester's solution for compartment-based simulation: Sample at finite intervals (ST > DT) from process noise and feature noise.md) continuous dynamics may cause the gap between discrete and continuous model. This gap from stochastic discretization of continuum approximation is well explained in
| Aspect | Steel et al. (2020) | Cortés et al. (2023) |
| --------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Core Model Type | Stochastic birth-death process | Deterministic TAP equation |
| Base Equation | <font color="blue">Mt+1</font> = <font color="blue">Mt</font>(1 - <font color="green">μ</font>) + ∑(<font color="red">αi</font>(<font color="blue">Mt</font> choose i)) | Same base equation |
| Key Parameters | - <font color="green">μ</font>: extinction rate<br>- <font color="red">αi</font> = <font color="#C0A0C0">P</font><font color="red">α^i</font>: efficiency of i-way combinations<br>- <font color="#C0A0C0">P</font> ∈ (0,1]: overall efficiency<br>- <font color="red">α</font>: base rate | - <font color="green">μ</font>: extinction rate<br>- <font color="red">α</font>: single combination rate |
| Growth Pattern | Stochastic with possible extinction; E[T] and Var[T] derived | Deterministic with guaranteed finite-time explosion |
| Implementation Steps | 1. Remove items: <font color="#C0A0C0">u</font> ~ Poisson(<font color="green">μ</font><font color="blue">Mt</font>)<br>2. Calculate expected combinations: <font color="#C0A0C0">si</font> = <font color="#C0A0C0">P</font>×<font color="red">αi</font>×(<font color="blue">Mt</font> choose i)<br>3. Generate new items: <font color="#C0A0C0">ri</font> ~ Poisson(<font color="#C0A0C0">si</font>)<br>4. Update: <font color="blue">Mt+1</font> = <font color="blue">Mt</font> - <font color="#C0A0C0">u</font> + ∑<font color="#C0A0C0">ri</font> | Direct calculation:<br><font color="blue">Mt+1</font> = <font color="blue">Mt</font>(1 - <font color="green">μ</font>) + <font color="red">α</font>(2^<font color="blue">Mt</font> - <font color="blue">Mt</font> - 1) |
| Variable Definitions | - <font color="blue">Mt</font>: number of items at time t<br>- <font color="#C0A0C0">si</font>: expected new items from i-way combinations<br>- <font color="#C0A0C0">ri</font>: actual new items (stochastic)<br>- <font color="#C0A0C0">u</font>: number of items removed | - <font color="blue">Mt</font>: number of items at time t<br>- No intermediate variables needed |
| Continuum Treatment | Stochastic discretization of continuum approximation | Direct analysis of discrete equation |
| Numerical Method | Poisson distribution sampling at each step | Direct iteration of TAP equation |
| Time Step Constraints | <font color="#C0A0C0">si</font> must stay < 1 for valid Poisson sampling, requiring small Δt | No constraints |
| Combination Limit | i ≤ 4 to keep computation tractable | No limit |
| Process Meaning | - <font color="#C0A0C0">u</font> captures random extinctions<br>- <font color="#C0A0C0">si</font> represents potential new combinations<br>- <font color="#C0A0C0">ri</font> introduces randomness in successful combinations<br>- Sum of <font color="#C0A0C0">ri</font> gives total innovations | Single deterministic step combining:<br>- Extinction: <font color="blue">Mt</font>(1 - <font color="green">μ</font>)<br>- All possible combinations: <font color="red">α</font>(2^<font color="blue">Mt</font> - <font color="blue">Mt</font> - 1) |