# Class 8: Yedioth Newsvendor Model (πŸ“°) *Aug 1, 2025 | [Transcript](./🦦/8nv(πŸ“°)15778_intro_ops_otter_ai.md)* ## 🎯 Teaching Arc **Hook**: "14,000 SKUs, weekly delivery, unpredictable demand" **Puzzle**: How optimize inventory when demand is censored? **Resolution**: Pool data + newsvendor model with service levels **Model**: Q* = √(2DF/H) + safety stock for uncertainty ## πŸ—£οΈ Quality Participation **Joe** ⭐: "Can update Q after first cycle vs online learning" - Prof: Appreciated complexity awareness - Impact: ⭐️"Changing Q complicates policy, makes fragile" **Key Discussion**: Service level trade-offs - u/(u+o) formula for target service (95%) - "Hate runout AND hate inventory" ## πŸ“Š Quick Scores Focus on students who: - Question model assumptions - Identify implementation challenges - Connect theory to practical constraints ## πŸ”— 421 Diagram ### Yedioth Model ``` 🟒 Weekly delivery 🟣 Small retailers Sales data 14,000 SKUs \ / Coordinate ←→ Compel / \ 🟠 Min returns πŸ”΄ 95% availability Reduce waste One-stop shop ``` ## πŸ“š Exam Essentials **Concepts**: - Newsvendor with censored demand - Service level: u/(u+o) where u=underage, o=overage - Lead time uncertainty (DDLT as random variable) **EOQ Components**: - D: Demand rate - F: Fixed order cost ($500) - H: Holding cost ($0.45) - C: Unit cost ($45) **Strategy**: Pool similar products for better demand estimates **Traps**: ❌"Optimize each SKU separately" βœ…"Pool data across similar items" ## πŸŽ“ Recitation Points - ⭐️"Updating Q frequently makes system fragile" - "5-day lead time adds complexity" - "Balance stockout cost vs holding cost" --- *Previous: [Zara Continued](./7πŸ‘—_Zara_Continued.md) | Next: [Risk Pooling](./9πŸŠβ€β™€οΈπŸšš_Pool_Walmart_Amazon.md)*