# Enhanced STRAP Paper Revision Prompt ## Background Context You are tasked with revising an academic paper about a novel entrepreneurial decision-making framework called STRAP (Strategic Threshold Resolution for Actionable Priorities). This framework helps early-stage entrepreneurs efficiently prioritize actions when facing limited resources and uncertainty across multiple stakeholders. ## Transformation Goals Transform the draft paper into a focused, structured paper about the STRAP framework with these key changes: 1. **Simplify to Two Stakeholders**: Focus only on suppliers and customers 2. **Use Binary States**: Each stakeholder has only two states - Accept (1) or Reject (0) 3. **Replace Entropy with Acceptance Probabilities**: Use direct probabilities instead of entropy 4. **Introduce Transition Matrices**: Show how actions affect state transitions between the four venture states 5. **Contrast Independent vs. Interdependent Models**: Show how interdependence creates new transition possibilities 6. **Follow C-L-G-A-I Structure**: Organize introduction with Context-Literature-Gap-Approach-Implications ## Complete Paper Structure ### Abstract Create a concise abstract that: - Defines STRAP as using "probabilistic, statistical, and optimization theory implemented with probabilistic programming" - Mentions both independent and interdependent stakeholder modeling - Focuses on acceptance probabilities rather than entropy - Highlights bottleneck breaking approach with Sublime Systems case study ### 1. Introduction Structure with these explicit subsections: **1.1 Entrepreneurial Decision-Making Reimagined** - Frame entrepreneurship as a universal cognitive process - Mention how current guidance often fails when it ignores context - Position STRAP as using probabilistic programming to predict stakeholder behavior **1.2 Context: Prioritizing Actions Under Interdependent Stakeholder Uncertainty** - Describe resource-constrained entrepreneurs needing to sequence actions - Provide examples: Segway, Tesla, Skinniger, Better Place - Emphasize importance of stakeholder interdependence **1.3 Literature Foundation: Fragments Without Integration** - Review Lean Startup, operations literature, platform strategy - Mention scheduling problems with robust optimization - Identify promising components that haven't been integrated **1.4 Gap: Missing Objective Function and Domain-Specific Limitations** - Articulate two gaps: no objective function, excessive domain specificity - Support with examples from different contexts (biotech vs IT) - Set up need for framework adaptable across contexts **1.5 Approach: STRAP Framework** - Define STRAP with full name - Describe entrepreneur as modeling agent - Outline key components: acceptance probabilities, state transitions - Highlight both independent and interdependent stakeholder modeling **1.6 Implications: Personalized Guidance and Ecosystem Benefits** - Benefits for entrepreneurs (personalized guidance) - Benefits for support organizations (effective mentoring) - Ecosystem-level benefits (resource allocation, negotiation) ### 2. Methods: The STRAP Framework **2.1 Model Overview and Notation** - Define stakeholders J = {supp, cust} - Define notation: p_j^1 (acceptance probability), f_j^1 (value of acceptance), etc. - Define four venture states: (0,0), (1,0), (0,1), (1,1) - Define actions A = {a_supp, a_cust} **2.2 Perception Module: Stakeholder Acceptance Modeling** - Present logistic model for mapping attributes to probabilities: ``` p_j^1(x) = exp(Ξ²_j^T x) / (1 + exp(Ξ²_j^T x)) ``` - Provide Sublime Systems example with specific parameter values **2.3 Modeling Interdependent Stakeholder Uncertainties** - Explain the four venture states: (supplier state, customer state) - Introduce 4Γ—4 transition matrices showing how actions affect state transitions - Contrast independent model (many impossible transitions) with interdependent model - Use format from the sketch with X marking impossible transitions **2.4 Action Selection Framework** - Present simplified selection rule: ``` a* = argmax_a [ Ξ£_j w_jΒ·f_j^1Β·Ξ”p_j^1(a) / c_a ] ``` - Focus on cost-normalized benefit without dual formulation **2.5 Bottleneck Breaking Algorithm** - Detail step-by-step process for selecting actions - Explain how the algorithm identifies and breaks bottlenecks ### 3. Results **3.1 Acceptance Probability Improvements** - Apply STRAP to Sublime Systems case - Show initial and improved acceptance probabilities for suppliers and customers **3.2 State Transition Visualization** - Create four 4Γ—4 transition matrices in this exact format: ``` From (0,0) (1,0) (0,1) (1,1) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” To (0,0) β”‚ 1/3 X X X β”‚ (1,0) β”‚ 2/3 1/2 X X β”‚ (0,1) β”‚ X X 1/3 X β”‚ (1,1) β”‚ X X 2/3 1 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ P₁ Pβ‚‚ P₃ Pβ‚„ ``` - Create matrices for: 1. action_customer with Independent Stakeholders 2. action_customer with Interdependent Stakeholders 3. action_supplier with Independent Stakeholders 4. action_supplier with Interdependent Stakeholders **3.3 Action Sequence Comparison** - Compare STRAP-guided sequence with technology-first approach - Show improvements in acceptance probabilities under each approach **3.4 Performance Metrics** - Present final state probabilities, costs, and acceptance improvements ### 4. Discussion **4.1 Entrepreneurial Operations Connection** - Connect to Fine's work on scaling - Show how STRAP helps decide which operational tool to deploy first **4.2 Entrepreneurial Strategy Integration** - Link to Gans' explore-exploit framework - Explain how STRAP provides quantitative stopping rules **4.3 Real Options Framework Application** - Organize around ABSTRACTION, DUALITY, and AGENCY principles - Show how STRAP extends real options theory ### 5. Further Work Include only these four subsections: **5.1 Entropy-Based Unknown Unknowns** - Explain that "decreasing uncertainty implies higher fidelity, not higher acceptance" - Show how a "clean reject" also represents reduced uncertainty - Distinguish between quality of information and favorability of outcomes **5.2 Enhanced Interdependence Modeling** - Propose more sophisticated network models for stakeholder relationships - Suggest causal discovery techniques for hidden interdependencies **5.3 Dual Formulation for Scaling Diagnostics** - Present dual formulation that was removed from Methods - Show how it helps answer "when to scale" question - Explain diagnostic capabilities for venture scaling readiness **5.4 Ecosystem-Level Applications** - Describe applications across multiple ventures in accelerators - Suggest metrics for ecosystem health and bottlenecks ## Visualization Requirements The key visualization consists of four 4Γ—4 transition matrices that must exactly match this format: ``` From (0,0) (1,0) (0,1) (1,1) β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” To (0,0) β”‚ 1/3 X X X β”‚ (1,0) β”‚ 2/3 1/2 X X β”‚ (0,1) β”‚ X X 1/3 X β”‚ (1,1) β”‚ X X 2/3 1 β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ P₁ Pβ‚‚ P₃ Pβ‚„ ``` Create all four matrices with: - Rows labeled as the "To" states (0,0), (1,0), (0,1), (1,1) - Columns labeled as the "From" states (0,0), (1,0), (0,1), (1,1) - States ordered as shown, representing (supplier state, customer state) - Fractions (1/3, 1/2, 2/3, etc.) for probabilities - X marking impossible transitions - Labels P₁, Pβ‚‚, etc. at the bottom ## Key Mathematical Notation 1. **States**: (supplier state, customer state) where 0=Reject, 1=Accept - (0,0): Supplier rejects, customer rejects - (1,0): Supplier accepts, customer rejects - (0,1): Supplier rejects, customer accepts - (1,1): Supplier accepts, customer accepts 2. **Probabilities**: - p_j^1: Probability stakeholder j accepts - p_j^0: Probability stakeholder j rejects (p_j^0 = 1 - p_j^1) - Ξ”p_j^1(a): Change in acceptance probability from action a 3. **Selection Formula**: ``` a* = argmax_a [ Ξ£_j w_jΒ·f_j^1Β·Ξ”p_j^1(a) / c_a ] ``` 4. **Logistic Model**: ``` p_j^1(x) = exp(Ξ²_j^T x) / (1 + exp(Ξ²_j^T x)) ``` ## Important Concepts to Emphasize 1. **Stakeholder Interdependence**: Actions targeting one stakeholder can affect other stakeholders 2. **Independent vs. Interdependent Models**: - Independent: Actions only affect target stakeholder (many impossible transitions) - Interdependent: Actions can affect both stakeholders (enabling diagonal transitions) 3. **Bottleneck Breaking**: Focus resources on stakeholder with highest acceptance improvement per resource unit 4. **Acceptance vs. Uncertainty**: The model focuses on improving acceptance probabilities directly rather than reducing entropy Transform the draft paper using these specifications to create a focused, clear presentation of the STRAP framework based on stakeholder acceptance probabilities and state transitions.