| # | Chapter | Sub-Sections | |---|---------|--------------| | 1 | **Introduction** | 1. Example: Polynomial Curve Fitting<br>2. Probability Theory<br>3. Model Selection<br>4. The Curse of Dimensionality<br>5. Decision Theory<br>6. Information Theory | | 2 | **Probability Distributions** | 1. Binary Variables<br>2. Multinomial Variables<br>3. The Gaussian Distribution<br>4. The Exponential Family<br>5. Non-parametric Methods | | 3 | **Linear Models for Regression** | 1. Linear Basis Function Models<br>2. The Bias-Variance Decomposition<br>3. Bayesian Linear Regression<br>4. **Bayesian Model Comparison**<br>5. The Evidence Approximation<br>6. Limitations of Fixed Basis Functions | | 4 | **Linear Models for Classification** | 1. Discriminant Functions<br>2. Probabilistic Generative Models<br>3. Probabilistic Discriminative Models<br>4. The Laplace Approximation<br>5. Bayesian Logistic Regression | | 5 | **Neural Networks** | 1. Feed-forward Network Functions<br>2. Network Training<br>3. Error Back-propagation<br>4. The Hessian Matrix<br>5. **Regularization in Neural Networks**<br>6. Mixture Density Networks<br>7. **Bayesian Neural Networks** | | 6 | **Kernel Methods** | 1. Dual Representation<br>2. Constructing Kernels<br>3. Radial Basis Function Networks<br>4. Gaussian Processes | | 7 | **Sparse Kernel Machines** | 1. Maximum Margin Classifiers<br>2. Relevance Vector Machines | | 8 | **Graphical Models** | 1. Bayesian Networks<br>2. Conditional Independence<br>3. Markov Random Fields<br>4. Inference in Graphical Models | | 9 | **Mixture Models and EM** | 1. k-Means Clustering<br>2. Mixtures of Gaussians<br>3. An Alternative View of EM<br>4. The EM Algorithm in General | | 10 | **Approximate Inference** | 1. Variational Inference<br>2. Illustration: Variational Mixture of Gaussians<br>3. Variational Linear Regression<br>4. Exponential Family Distributions<br>5. Local Variational Methods<br>6. Variational Logistic Regression<br>7. Expectation Propagation | | 11 | **Sampling Methods** | 1. Basic Sampling Algorithms<br>2. Markov Chain Monte Carlo<br>3. Gibbs Sampling<br>4. Slice Sampling<br>5. The Hybrid Monte Carlo Algorithm<br>6. Estimating the Partition Function | | 12 | **Continuous Latent Variables** | 1. Principal Component Analysis<br>2. Probabilistic PCA<br>3. Kernel PCA<br>4. Non-linear Latent Variable Models | | 13 | **Sequential Data** | 1. Markov Models<br>2. **Hidden Markov Models**<br>3. **Linear Dynamical Systems** | | 14 | **Combining Models** | 1. **Bayesian Model Averaging**<br>2. Committees<br>3. Boosting<br>4. Tree-based Models<br>5. Conditional Mixture Models |