## 1️⃣ Overview
**Period:** 2021–2025
**Core Technology:** Quantum computing hardware & software stack
**Transition Goal:** Move from NISQ (noisy) to error-corrected quantum (ECQ) systems.
**Bayesian Frame:** Actors update priors about feasibility, timing, and value of quantum advantage as experimental evidence accumulates.
NISQ to FTQC (fault tolerant) transition
---
## 2️⃣ Ecosystem Actors (Map)
| Actor Type | Examples | Role in Transition | Coordination Mechanism |
| ------------------------- | ------------------------------------ | ----------------------------------------------------- | ----------------------------------------- |
| Founder / Entrepreneur | IonQ, QuEra, Rigetti | Develop competing architectures and signal milestones | Promise variance management via roadmaps |
| University / Research Lab | MIT, Caltech, ETH | Fundamental research & standards | Benchmark consortia, open publications |
| Venture / Risk Capital | Quantonation, Andreessen Horowitz | Fund architecture bets under uncertainty | Portfolio diversification, staged funding |
| Corporate / Integrator | IBM, Google, PsiQuantum | Scale technology & platforms | Transparent roadmaps, cloud APIs |
| Government / Regulator | DOE, EU Quantum Flagship, Japan MEXT | Fund and coordinate consortia | QED-C, national quantum programs |
| **Actor Type** | **Examples** | **Role in Transition** | **Coordination Mechanism** |
| -------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Founder / Entrepreneur** | 1) **Riverlane** (실시간 QEC/디코딩 스택 ‘Deltaflow’) 2) **Q‑CTRL** (오류 억제/최적화) 3) **Quantum Machines** (OPX/OPX1000 실시간 제어) 4) **Classiq** (고수준→회로 합성) | **오류정정·제어·컴파일** 등 **핵심 보틀넥**을 표준 인터페이스에 맞춰 모듈 단위로 혁신 | 개방형 IR/언어(OpenQASM 3, QIR, CUDA‑Q)와 **디코더/API 사양**에 맞춘 **플러그인형** 통합; **애플리케이션 지향 벤치마크**로 성능을 **신뢰성 있게 신호화**. ([Riverlane](https://www.riverlane.com/quantum-error-correction-stack?utm_source=chatgpt.com "Deltaflow: The Quantum Error Correction Stack")) |
| **University / Research Lab** | 1) **DOE QIS Centers**: SQMS, Q‑NEXT, C²QA, QSA 2) **NQCC(UK)** 3) **QuTech(TU Delft‑TNO)** | **논리큐비트·QEC 스케일링의 기초증거**와 **테스트베드** 제공; 재료·결함물리·디코딩 이론 | **국가센터/테스트베드** 공동연구, 오픈데이터·참조실험 공유, **기초↔응용 코디자인**. ([The Department of Energy's Energy.gov](https://www.energy.gov/articles/energy-department-announces-625-million-advance-next-phase-national-quantum-information?utm_source=chatgpt.com "Energy Department Announces $625 Million to Advance ...")) |
| **Venture / Risk Capital** | 1) **Quantonation**(양자 전용 VC) 2) **The Engine**(MIT Tough Tech) 3) **EIC Fund/Accelerator**(EU 딥테크/양자) | **불확실성 높은 구간의 자본공급**과 **마일스톤 의존 투자계약**으로 학계→산업 이전 가속 | **포트폴리오 리스크 분산**, **공공‑민간 블렌디드 파이낸스**(EIC 등), **성능 지표 연동형 단계투자**. ([EIF](https://www.eif.org/InvestEU/news/2025/eif-invests-eur30-million-in-quantum-technologies-and-deep-physics-with-quantonation-ii.htm?utm_source=chatgpt.com "EIF invests €30 million in Quantum technologies and Deep ...")) |
| **Corporate / OEM / Integrator** | **HW 플랫폼**: IBM, Google, Quantinuum, IonQ, Atom Computing, PsiQuantum**클라우드 어그리게이터**: AWS Braket, Azure Quantum, **IBM Quantum Network** | **스케일 가능한 물리/논리 스택 구현**과 **산업연합·얼라이언스** 결성, **생태계 온보딩** | **로드맵/데모**로 오류정정 진전을 신호화(예: 표면부호 스케일링, Heron/Condor 진전); 개방형 API로 **다중 모달리티 접근** 제공. ([Nature](https://www.nature.com/articles/s41586-022-05434-1?utm_source=chatgpt.com "Suppressing quantum errors by scaling a surface code ...")) |
| **Government / Regulator** | **미국**: NQI Act/CHIPS, DOE QIS 센터 갱신, NIST(표준·PQC)·DARPA(QBI)**EU/UK**: EuroHPC(양자‑HPC 통합), QuIC(산업컨소시엄), NQCC/NQTP | **장기 로드맵·공동조달·기준 설정**(용어·성능·보안), **지역 허브** 육성 | **법/예산**(NQI/CHIPS), **조달·그랜드챌린지**(EuroHPC, DARPA QBI), **표준화**(IEEE P7130/7131), **국가 테스트베드 네트워크**. ([National Quantum Initiative](https://www.quantum.gov/wp-content/uploads/2022/08/NQIA2018-NDAA2022-CHIPS2022.pdf?utm_source=chatgpt.com "NATIONAL QUANTUM INITIATIVE ACT")) |
---
## 3️⃣ Polycentric Dynamics
- **Coordination gaps:** Competing definitions of “quantum advantage” and “logical qubit.”
- **Visible hands:** QED-C and DOE consortia align vocabulary and benchmarks.
- **Naming / Framing:** “Logical qubit,” “error correction,” “quantum advantage.”
- **Learning cycles:** Milestone demonstrations → shared benchmarks → belief convergence.
---
## 4️⃣ Evidence of Bayesian Learning
| Stage | Promise | Evidence | Update |
| --------------- | --------------------------------- | ------------------------------------------ | ------------------------------------- |
| t₀ (Early) | “Full quantum advantage by 2023.” | Underperformance & technical delays. | Realigned expectations to 2026+. |
| t₁ (Correction) | “Error-corrected demo imminent.” | Google ‘Willow’ (105 qubits) announcement. | Renewed belief in achievable scaling. |
| t₂ (Refocus) | “Commercial use cases by 2025.” | Funding resurgence + standard benchmarks. | Shared optimism & stable priors. |
---
## 5️⃣ Quantitative Hooks
- **Funding trajectories:** Series A (2021–22) → Series B+ (2023–25).
- **R&D proxies:** Grants, patents, benchmark participation.
- **Windows:** 2022-12 → 2024-12 (main); 2022-12 → 2025-11 (extended); 2021-12 → 2023-12 (robustness).
---
## 6️⃣ Comparative Insights
- **Commitment vs Flexibility:** Early hype (commitment) gave way to flexible, data-driven promises.
- **Coordination challenge:** Aligning heterogeneous architectures into shared benchmarks.
- **Effective visible hand:** QED-C acting as coordination hub.
- **Shared prior formation:** Collective belief that error correction is the inflection point.
---
## 7️⃣ References / Notes
- Interviews: 18 (founders, labs, VCs, consortia leads).
- Data: PitchBook, DOE reports, company disclosures.
- Related files: [[Quantum-Transition/Interviews/Founder]] [[Quantum-Transition/Synthesis]]
## Table 2: Application Examples of Quantum Computing (NISQ → FTQC)
| Cost Component | Category | Description |
|----------------|----------|-------------|
| **cmatch** | **1. Matching** | • **Early Investment Attraction:** FTQC commercialization will take more than 10 years, so securing long‑term investors (e.g., value‑adding VCs) is essential. <br> • Deep‑tech‑focused investors are important because they can handle high technical uncertainty and long R&D cycles. |
| **rereconfig** | **2. Reconfiguration** | • **Software Development:** As NISQ software becomes obsolete, new quantum error‑correction (QEC) software layers will be needed for FTQC. <br> • **Hardware Upgrades:** Example: OpenQASM 3.0 supports FTQC‑compatible error‑corrected qubit control and circuit representations. |
| **govern** | **3. Governance** | • **Modular Governance:** The quantum ecosystem requires modular, open standards while accommodating regional governance differences. <br> • Example: The EU and Japan emphasize transparency and fairness in ecosystem governance. |
| **evidence** | **4. Evidence** | • **Verification Required:** To replace classical computing, strong evidence of performance improvement is required. <br> • Companies such as Zapata and Sandbox AQ highlight the need for demonstrating practical quantum advantage. <br> • **Example:** Google’s claim of a 1,000‑year classical simulation was later corrected to 11 days, showing the importance of careful validation. |
****
df_quantum![[⚛️ Quantum Transition – Polycentric Governance Analysis 2025_12_16.excalidraw]]