### Final Grade & Feedback Q1: 15/15 Q2: 15/15 Q3: 10/15 [Q3 result 247 is outside 5% range of 287] Q4: 15/15 Q5: 10/10 Bonus: 0/10 [Only censoring mentioned, no distribution assumption] **Total: 65/80** Yedioth Case Report by Wolf Pack 1 August 2025 Lkhagvajargal Baasantseren, Manuel Duvignau, Lanre Ojutalayo, Rachmawaty Sudirman, and Steph Wood Questions: 1. In the current distribution model, where each retailer is supplied once a week independently of all other retailers, what would be a good method to compute the quantity shipped to each retailer to guarantee that 99% of customers will be served? Apply your approach to compute recommended quantities to the 50 retailers (explain the methodology in the body of the report and provide the results in appendix). Step 1. Calculate average of weekly sales μ and standard deviation of weekly sales  for each retailer Step 2. Calculate service rate k (or use Z table) to guarantee 99% customers will be served which means the probability of P_stock = 99% to get k = 2.32 Step 3. Calculate the demand for each retailer q* by using formula: 𝑞 ∗ = μ + k.  = μ + (2.32) Total Q* for all 50 retailers are 393.30 ~ 394 copies per week. If we round up for each retailer the total Q* will be 🚨419 copies🚨 per week. Furthermore, we might want to 🚨consider sell-through rate🚨 in the equation because there is a risk that we not capturing the real demand (we data with sell-through = 1 and no sellthrough = 0). Also, we may calculate the Expected Utilization E(U) for each retailer to find the demand as an integer value considering that the product is a newspaper – i.e. consider rounding up or down considering the overstock vs the understock cost. In our calculation, we are assuming that sell-through is minimal. The calculation results for each retailer can be seen in Appendix 1. 2. If Yedioth could implement full pooling among all of the 50 retailers what would be the estimated benefit in terms of total production levels and returns if the required service level is 99%? (Note: Full pooling means that somehow all of the retailers could be supplied inreal-time from the same pool of inventory.) Step 1. Calculate total average sales ∑ μ𝑖 = 204.62 from previous calculation in Q1 Step 2. Calculate the standard deviation of sales  for 50 retailers for pooling Assume we have independent normal distributions X𝑖 ~ N(μ𝑖 , 𝑖 ) Hence, ∑ X𝑖 = N (∑ μ𝑖 , SQRT(∑ 𝑖 2 )) Standard deviation 𝑝 = 12.22 Step 3. Use the same k = 2.32 to get the P_stock = 99% Step 4. Calculate the demand for all retailers using formula: Yedioth Case Report by Wolf Pack 1 August 2025 Lkhagvajargal Baasantseren, Manuel Duvignau, Lanre Ojutalayo, Rachmawaty Sudirman, and Steph Wood 𝑞 ∗ = μ + k.  𝑞 ∗ = 204.62 + 2.32 × 12.22 = 𝟐𝟑𝟐. 𝟗𝟔 ~ 🚨233 copies🚨 per week (rounding up to capture that we cannot sell fractions of magazines, the same is reflected throughout this assignment). Yedioth would have the estimated benefit from this pooling by 394 – 233 = 161 copies per week. 3. Suppose that one could implement full pooling only among retailers that are treated by the same sales agent. What would be the potential benefit in terms of production levels and returns, assuming 99% service level. Compare to your #2 answer. Step 1. Calculate average of weekly sales μ and standard deviation of weekly sales  pooled by each sales agent Step 2. Use the same k = 2.32 to get the P_stock = 99% Step 3. Calculate the demand for each sales agent q* by using formula: 𝑞 ∗ = μ + k.  = μ + (2.32) Q* pooling by the sales agent are 246.88 ~ 🚨247 copies🚨 per week referred the detail calculation in Appendix 2. It is not as optimized as if Yedioth does the full pooling compared to 233 copies per week from Q2 with 247 copies per week that we get with pooling by sales agent. 4. Propose more realistic processes/strategies that leverage the fact that the sales agent visits each retailer in the middle of the week. What would the benefit be of these processes/strategies? • • • 🚨Require sales agents to collect real-time inventory data🚨 while on site to increase visibility of inventory tracking without requiring RFID tags. This will help demand forecasting for Yedioth – i.e. assess performance early in the week to more accurately forecast sales later in the week. In order to avoid sell-through scenarios, it could be useful for sales agents to help restock during their weekly visits. This would help the company maximize its profits, but it will also help it improve its service level and foster retailer satisfaction. Use sales agents to redistribute overstock from other retailers to retailers at risk of sell-through. 5. What do you think are the organizational challenges that Assaf will have to address? • There will be significant cultural obstacles related to transitioning from the current business model to the new more analytical structure. Significant training and education will be required to ensure that the staff (in particular the Research Department) understand the changes and implement appropriately. Yedioth Case Report by Wolf Pack 1 August 2025 Lkhagvajargal Baasantseren, Manuel Duvignau, Lanre Ojutalayo, Rachmawaty Sudirman, and Steph Wood • • • 🚨Motivating the sales agents may be difficult because their compensation is incentivized by number of orders.🚨 The company should consider a different compensation model to ensure that the right aspects of the business are incentivized with the sales staff. Expensive and potentially complex data collection process, considering that the company works with 8,000 retailers. Structurally, a 99% service rate implies that the company will still be required to carry large amounts of safety stock. Yedioth Case Report by Wolf Pack 1 August 2025 Lkhagvajargal Baasantseren, Manuel Duvignau, Lanre Ojutalayo, Rachmawaty Sudirman, and Steph Wood Appendix 1 Q* per Retailer Customer / Retailer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Average of Sales Weekly (μ) STD Sales (𝝈) 4.266666667 1.763261441 5.447368421 1.940985657 1.608695652 0.744707575 1.804347826 1.185459409 3.086956522 1.457945083 3.608695652 1.731771872 3.926829268 1.602969805 14.43478261 3.913805616 4.733333333 1.615268061 3.173913043 1.371201384 4 1.862951485 4.066666667 1.009049958 2.244444444 1.111010096 2.456521739 1.129533271 4.56097561 1.581909929 6.52173913 2.008195768 4.782608696 1.698535886 1.860465116 0.804197185 5.847826087 1.763423329 3.25 1.740422296 2.782608696 1.009137002 4.195652174 2.145999536 5.136363636 2.097516905 1.565217391 1.147987106 8.739130435 2.38918659 3.152173913 1.475238456 2.162790698 1.703361279 6.652173913 3.107105772 1.942857143 1.258917769 8 2.683281573 4.804347826 1.939296152 2.586956522 1.239643084 3.673913043 1.606297991 2.217391304 1.298084803 3.953488372 1.661231448 For 99% SR (k=2.32) 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 q* 8.35743321 9.950455145 3.336417226 4.554613654 6.469389114 7.626406395 7.645719215 23.51481164 8.480755235 6.355100255 8.322047445 6.40766257 4.821987868 5.077038928 8.231006646 11.18075331 8.72321195 3.726202585 9.938968209 7.287779726 5.123806539 9.174371098 10.00260286 4.228547478 14.28204332 6.574727131 6.114588864 13.8606593 4.863546367 14.22521325 9.303514899 5.462928477 7.400524383 5.228948046 7.807545331 Round Up 9 10 4 5 7 8 8 24 9 7 9 7 5 6 9 12 9 4 10 8 6 10 11 5 15 7 7 14 5 15 10 6 8 6 8 Yedioth Case Report by Wolf Pack 1 August 2025 Lkhagvajargal Baasantseren, Manuel Duvignau, Lanre Ojutalayo, Rachmawaty Sudirman, and Steph Wood 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 2.673913043 3.608695652 3.404761905 3.043478261 9.065217391 3.695652174 3.735294118 3.065217391 3.375 1.47826087 6.352941176 5.512195122 1.428571429 2.928571429 4 1.549972728 1.58434369 1.083344501 1.413530202 2.506898694 1.473764118 2.093407018 1.466699604 0.916125381 0.936640105 1.920895513 2.026350799 1.065107404 1.268814451 1.224744871 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 Total 6.269849773 7.284373013 5.918121147 6.32286833 14.88122236 7.114784928 8.591998398 6.467960473 5.500410885 3.651265913 10.80941877 10.21332898 3.899620605 5.872220954 6.841408102 393.3001803 7 8 6 7 15 8 9 7 6 4 11 11 4 6 7 419 Yedioth Case Report by Wolf Pack 1 August 2025 Lkhagvajargal Baasantseren, Manuel Duvignau, Lanre Ojutalayo, Rachmawaty Sudirman, and Steph Wood Appendix 2 Q* per Sales Agent Sum of Sales Week/Agent 2008-07-14 2008-07-21 2008-07-28 2008-08-11 2008-08-18 2008-08-25 2008-09-01 2008-09-15 2008-09-21 2008-10-27 2008-11-10 2008-11-17 2008-11-24 2008-12-08 2008-12-15 2008-12-22 2009-01-05 2009-01-12 2009-01-19 2009-01-26 2009-02-09 2009-02-16 2009-02-23 2009-03-09 2009-03-16 2009-04-20 2009-05-11 2009-05-18 2009-06-08 2009-06-15 2009-06-22 2009-06-29 2009-07-13 2009-07-20 2009-07-27 2009-08-10 2009-08-17 1 17 15 20 16 24 25 34 29 28 22 22 24 25 17 24 30 29 21 24 31 19 25 27 26 25 21 19 23 21 20 22 23 34 22 18 17 17 2 11 10 10 13 13 6 13 12 18 16 15 16 14 17 12 15 16 16 16 15 19 14 16 18 16 21 22 23 10 6 16 18 20 18 18 16 20 3 13 15 13 11 13 10 10 11 14 8 11 10 9 7 15 9 12 11 16 14 14 18 13 13 16 16 12 15 13 13 13 12 17 14 9 15 17 4 18 14 12 20 12 13 19 22 22 17 15 22 19 18 13 16 19 16 20 18 13 22 18 18 11 21 15 10 17 22 18 19 22 19 21 15 20 5 21 19 26 28 22 18 29 32 20 18 29 31 18 26 35 19 30 31 24 23 25 37 35 34 22 26 29 38 37 35 30 37 36 37 31 34 33 6 27 24 28 23 19 26 19 20 24 25 21 15 25 19 20 22 25 22 19 19 22 28 18 24 18 24 22 19 21 18 14 13 28 29 29 24 19 7 11 7 10 13 11 8 8 11 13 11 12 11 13 10 17 14 14 10 10 6 11 12 10 11 9 9 12 10 6 10 9 12 12 11 12 16 12 8 16 12 15 12 15 13 15 16 18 24 9 17 15 15 11 19 17 12 18 15 14 18 21 10 14 14 14 15 17 15 12 10 17 14 16 16 18 9 30 20 30 28 26 24 26 39 28 28 31 36 29 33 34 29 27 25 29 31 31 36 35 29 17 21 37 36 21 27 38 24 35 32 33 19 20 10 6 7 9 11 17 15 19 23 14 12 19 16 14 19 20 19 19 16 21 13 18 22 14 23 17 19 19 19 14 13 16 15 17 20 11 17 17 Yedioth Case Report by Wolf Pack 1 August 2025 Lkhagvajargal Baasantseren, Manuel Duvignau, Lanre Ojutalayo, Rachmawaty Sudirman, and Steph Wood 2009-08-24 2009-08-31 2009-10-12 2009-10-19 2009-10-26 2009-11-09 2009-11-16 2009-11-23 2009-11-30 Grand Total Avg of Sales Sum of Avg Sales Week/Agent 2008-07-14 2008-07-21 2008-07-28 2008-08-11 2008-08-18 2008-08-25 2008-09-01 2008-09-15 2008-09-21 2008-10-27 2008-11-10 2008-11-17 2008-11-24 2008-12-08 2008-12-15 2008-12-22 2009-01-05 2009-01-12 2009-01-19 2009-01-26 2009-02-09 2009-02-16 2009-02-23 2009-03-09 2009-03-16 19 18 11 20 26 20 13 16 10 21 31 29 30 23 19 19 36 33 23 18 12 21 26 16 16 17 17 19 33 21 22 20 11 19 24 19 11 11 9 16 19 25 23 21 12 18 18 23 19 19 16 11 22 22 1032 728 589 810 1290 1020 22.43478261 16 13 18 28 22.2 189.5869565 StdDev of Sales 1 2 1.50 0.96 1.50 1.73 2.58 1.91 0.82 1.71 1.41 2.22 3.81 1.91 1.30 1.71 1.92 2.45 1.52 1.82 2.19 1.30 2.19 1.73 2.59 0.84 1.87 0.45 1.82 1.82 2.39 1.14 3.24 1.00 1.92 1.79 1.48 1.92 2.95 1.48 2.17 1.87 2.39 1.10 2.35 1.79 3.65 1.79 1.48 1.67 2.35 2.77 3 1.14 0.71 1.52 1.48 0.89 1.00 1.73 1.64 0.84 1.52 1.64 1.22 0.84 1.14 1.22 1.64 1.52 1.64 2.17 1.30 1.64 1.52 1.34 1.82 0.84 4 2.08 3.00 2.71 2.45 1.41 1.89 2.77 2.88 3.51 1.67 2.92 2.88 3.77 2.79 2.07 2.59 3.03 2.77 2.45 1.82 2.30 2.97 2.88 2.41 1.30 5 4.72 2.50 5.00 5.89 5.74 3.32 5.32 5.35 3.56 3.11 4.57 5.56 2.38 6.40 5.12 3.30 4.65 7.04 4.55 2.87 4.19 6.88 5.10 5.26 2.41 17 12 21 17 15 20 23 17 15 16 31 20 8 20 23 17 11 18 20 17 12 23 23 11 10 13 25 9 13 19 25 12 11 20 22 9 516 720 1287 729 11 16 28 16 6 3.86 2.16 4.08 3.36 3.70 3.27 4.60 1.58 2.59 2.74 2.86 2.92 4.00 5.17 2.12 2.07 4.00 3.65 3.11 1.30 5.41 4.93 1.67 3.03 2.51 7 1.50 2.06 1.91 1.89 2.50 2.16 0.82 1.71 1.95 1.92 2.88 2.49 1.52 1.41 1.95 2.59 1.30 1.87 1.87 1.29 1.50 2.16 1.73 0.50 1.50 8 2.00 1.41 1.71 1.63 1.89 1.26 1.26 2.00 0.58 2.16 0.96 2.50 1.50 2.63 1.26 1.50 1.26 1.63 1.73 2.22 1.29 3.32 2.22 1.29 1.29 9 2.92 4.58 3.94 3.91 1.79 1.79 4.44 6.06 4.16 2.97 4.32 3.70 3.35 4.93 2.95 3.27 3.91 4.30 3.19 3.70 4.09 4.92 3.32 3.11 3.44 10 1.29 0.96 1.71 1.26 1.82 2.92 1.48 3.58 2.05 0.55 2.59 1.48 3.03 1.64 1.22 1.30 0.84 1.92 1.48 1.95 2.30 3.51 1.79 2.70 1.52 Yedioth Case Report by Wolf Pack 1 August 2025 Lkhagvajargal Baasantseren, Manuel Duvignau, Lanre Ojutalayo, Rachmawaty Sudirman, and Steph Wood 2009-04-20 2009-05-11 2009-05-18 2009-06-08 2009-06-15 2009-06-22 2009-06-29 2009-07-13 2009-07-20 2009-07-27 2009-08-10 2009-08-17 2009-08-24 2009-08-31 2009-10-12 2009-10-19 2009-10-26 2009-11-09 2009-11-16 2009-11-23 2009-11-30 Grand Total agent μ 𝝈 k q* 1 22.43 2.13 2.32 27.37 1.30 1.50 1.67 0.84 2.45 1.73 2.22 1.79 2.30 1.00 2.52 2.52 1.53 2.08 2.12 1.95 1.41 2.38 2.06 2.06 3.49 2.1258 2 15.83 1.84 2.32 20.08 1.92 2.30 2.07 1.87 0.84 1.79 1.52 2.92 1.95 2.41 2.17 2.35 1.95 1.92 2.70 2.79 1.52 1.00 1.64 3.35 1.30 1.8357 3 12.80 1.45 2.32 16.17 2.05 1.34 2.00 1.14 2.19 1.14 1.52 1.82 1.79 1.48 1.41 1.52 1.10 0.71 1.30 1.67 1.52 0.84 1.92 1.95 1.92 1.4488 4 17.61 2.28 2.32 22.89 Total Q* = 246.88 ~ 247 copies per week 2.39 2.75 1.29 3.85 2.41 2.38 2.36 1.95 1.64 1.64 2.55 2.45 2.00 2.06 2.49 1.92 1.48 2.17 2.28 1.29 1.26 2.2776 5 28.04 4.99 2.32 39.61 6 22.17 3.04 2.32 29.23 2.86 4.71 4.93 6.11 6.82 4.53 6.88 6.61 7.16 8.22 7.77 6.70 3.79 5.50 7.85 6.40 9.46 3.74 4.35 5.92 5.20 4.987 7 11.22 1.81 2.32 15.41 2.68 4.20 4.65 1.92 2.65 4.04 2.63 3.13 3.27 3.11 3.27 2.49 2.24 3.90 3.36 2.86 2.39 2.95 2.65 1.95 2.70 3.0393 8 15.65 1.67 2.32 19.54 1.26 1.41 2.38 1.00 3.21 1.00 3.46 2.00 2.22 2.16 2.58 2.16 1.71 3.40 1.71 0.58 1.50 1.83 1.87 1.14 1.64 1.8092 2.38 1.73 1.71 2.06 2.65 2.65 1.15 1.71 1.29 1.83 1.63 1.73 0.82 2.00 1.79 1.58 1.95 1.14 1.26 0.84 1.22 1.6748 9 27.98 3.51 2.32 36.11 10 15.85 1.99 2.32 20.47 3.11 4.16 4.09 2.39 4.10 4.39 2.49 4.69 5.59 4.92 2.08 1.53 1.71 3.50 3.90 3.10 2.16 4.11 2.99 2.22 4.20 3.5066 1.30 2.17 1.92 1.91 2.50 1.63 1.50 2.07 1.87 2.06 1.89 3.36 3.86 1.71 2.12 2.07 3.21 1.26 0.50 1.41 1.50 1.9925