# ๐Ÿ… Computational Bayesian Analysis - ๊ณ„์‚ฐ์  ๋ฒ ์ด์ง€์•ˆ ๋ถ„์„ > *"What are the right things to do?"* ## Field Overview CompBayes field๋Š” **๋ฒ ์ด์ง€์•ˆ ์ถ”๋ก **, **๋ถˆํ™•์‹ค์„ฑ ์ •๋Ÿ‰ํ™”**, **์ธ๊ณผ์ถ”๋ก **์„ ํ†ตํ•ด ์ „๋žต์  ์˜์‚ฌ๊ฒฐ์ •์„ ์—ฐ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ํ•œ์‚ฐ๋Œ€์ฒฉ์˜ ํ•™์ต์ง„์ฒ˜๋Ÿผ, ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ „๋žต๊ณผ ์ฆ๊ฑฐ ๊ธฐ๋ฐ˜ ์„ ํƒ์ด ํ•ต์‹ฌ์ž…๋‹ˆ๋‹ค. ### Core Questions - How do we quantify uncertainty in decisions? - How can we learn from limited data? - What is the causal effect of interventions? - How do we update beliefs with new evidence? ### Key Journals - **Journal of the American Statistical Association** - **Bayesian Analysis** - **Statistical Science** - **Journal of Computational and Graphical Statistics** ## Research Themes ### 1. ๐ŸŽฒ Bayesian Inference **Learning and updating beliefs** Related papers: - [[๐Ÿ“œGelman21_bayesholes]] - Avoiding Bayesian pitfalls - [[๐Ÿ“œgelman06_boxer๐ŸฅŠ]] - Boxing metaphor for Bayesian thinking - [[๐Ÿ“œmcelreath25_rethinking]] - Statistical rethinking - [[Space/Sources/Papers/๐Ÿ“œRichters21_incredible_utility]] - Incredible utility of Bayes **Core idea**: Coherent belief updating --- ### 2. ๐Ÿ”ง Computational Methods **Scaling Bayesian inference** Related papers: - [[Space/Sources/Papers/๐Ÿ“œStan manual on auto param tuning in warmup]] - MCMC tuning - [[๐Ÿ“œBurkner23_Bayesian model taxonomy]] - Model taxonomy - [[Space/Sources/Papers/๐Ÿ“œMargossian24_nested_rhat]] - Convergence diagnostics - [[๐Ÿ“œ๐Ÿ‘พ_mansinghka25_automate(formalization, programming)]] - Automated inference **Core idea**: Efficient computation enables complex models --- ### 3. ๐Ÿ“Š Model Building **Structuring uncertainty** Related papers: - [[Space/Sources/Papers/๐Ÿ“œCronin21_synthesize(theory)]] - Theory synthesis - [[๐Ÿ“œ๐Ÿข_meehl90_appraise(theory, amendments)]] - Theory appraisal - [[๐Ÿ“œ๐Ÿ‘พ_meehl67_test(theory, method)]] - Theory testing **Core idea**: Models as scientific tools --- ### 4. ๐ŸŽฏ Decision Theory **Optimal choices under uncertainty** Related papers: - [[Space/Sources/Papers/๐Ÿ“œWalters23_invest_beh_epis_alea]] - Epistemic and aleatory uncertainty - [[๐Ÿ“œHullman_How far can exchangeability get us toward agreeing on individual probability?]] - Exchangeability - [[Space/Sources/Papers/๐Ÿ“œPhillips19_How We Know What Not To Think]] - Negative knowledge **Core idea**: Decisions require probability --- ### 5. ๐Ÿ”ฌ Experimental Design **Learning efficiently** Related papers: - [[๐Ÿ“œ๐Ÿ…_kerr14_systematize(experimentation, entrepreneurship)]] - Systematic experimentation - [[๐Ÿ“œ๐Ÿ…_camuffo25_experiment(beliefs, entrepreneurs)]] - Belief experiments - [[๐Ÿ“œ๐Ÿ‘พ_camuffo19_structure(experiments, learning)]] - Structured learning **Core idea**: Experiment to learn --- ### 6. โš–๏ธ Moral Hazard and Incentives **Aligning interests** Related papers: - [[๐Ÿ“œ๐Ÿ…_bolton24_moral_hazard]] - Moral hazard theory - [[๐Ÿ“œBolton24]] - Bolton's latest work **Core idea**: Incentives shape behavior --- ### 7. ๐Ÿ“ˆ Portfolio Optimization **Balancing exploration and exploitation** Related papers: - [[๐Ÿ“œ๐Ÿ…_loch02_optimize(portfolio, selection)]] - Portfolio selection - [[๐Ÿ“œ๐Ÿ…_kavadias03_sequence(projects, optimization)]] - Project sequencing - [[๐Ÿ“œ๐Ÿ…_dada07_diversify(sourcing, suppliers)]] - Supplier diversification **Core idea**: Optimize the portfolio, not individual projects --- ### 8. ๐ŸŽญ Collective Behavior **Modeling social dynamics** Related papers: - [[๐Ÿ“œ๐Ÿ…_granovetter78_model(collective-behavior, thresholds)]] - Threshold models **Core idea**: Individual to collective --- ## Methodology Focus ### Bayesian Methods - MCMC (HMC, NUTS) - Variational inference - Hierarchical models ### Causal Inference - DAGs - Potential outcomes - Instrumental variables ### Model Comparison - Cross-validation - Information criteria - Bayes factors ## Writing Guide for ๐Ÿ… CompBayes Papers ### Structure 1. **Question**: What decision/inference problem? 2. **Model**: What probabilistic model captures uncertainty? 3. **Inference**: How do we compute the posterior? 4. **Validation**: How do we check the model? 5. **Decision**: What action follows from inference? ### Language - Use **probabilistic constructs**: prior, likelihood, posterior, uncertainty - Emphasize **quantification**: "how much" over "whether" - Bridge **inference and action**: belief โ†’ decision ### Common Mistakes โŒ Model without checking โŒ Point estimates without uncertainty โŒ Ignoring prior sensitivity โŒ No connection to decision ## Related Fields - [[4๐Ÿ‘พCognition]] - Bayesian cognition - [[1๐ŸขInnovation]] - Uncertainty in innovation - [[3๐Ÿ™Operations]] - Probabilistic operations ## Key Papers by Theme ![[papers.base#papers-cba]] --- > *"ๆ™บํ˜œ๋กœ์šด ๋จธ๋ฆฌ - ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์˜์‚ฌ๊ฒฐ์ •์œผ๋กœ ์ ์„ ํฌ์œ„ํ•˜๋‹ค"*