# ๐
Computational Bayesian Analysis - ๊ณ์ฐ์ ๋ฒ ์ด์ง์ ๋ถ์
> *"What are the right things to do?"*
## Field Overview
CompBayes field๋ **๋ฒ ์ด์ง์ ์ถ๋ก **, **๋ถํ์ค์ฑ ์ ๋ํ**, **์ธ๊ณผ์ถ๋ก **์ ํตํด ์ ๋ต์ ์์ฌ๊ฒฐ์ ์ ์ฐ๊ตฌํฉ๋๋ค. ํ์ฐ๋์ฒฉ์ ํ์ต์ง์ฒ๋ผ, ๋ฐ์ดํฐ ๊ธฐ๋ฐ ์ ๋ต๊ณผ ์ฆ๊ฑฐ ๊ธฐ๋ฐ ์ ํ์ด ํต์ฌ์
๋๋ค.
### Core Questions
- How do we quantify uncertainty in decisions?
- How can we learn from limited data?
- What is the causal effect of interventions?
- How do we update beliefs with new evidence?
### Key Journals
- **Journal of the American Statistical Association**
- **Bayesian Analysis**
- **Statistical Science**
- **Journal of Computational and Graphical Statistics**
## Research Themes
### 1. ๐ฒ Bayesian Inference
**Learning and updating beliefs**
Related papers:
- [[๐Gelman21_bayesholes]] - Avoiding Bayesian pitfalls
- [[๐gelman06_boxer๐ฅ]] - Boxing metaphor for Bayesian thinking
- [[๐mcelreath25_rethinking]] - Statistical rethinking
- [[Space/Sources/Papers/๐Richters21_incredible_utility]] - Incredible utility of Bayes
**Core idea**: Coherent belief updating
---
### 2. ๐ง Computational Methods
**Scaling Bayesian inference**
Related papers:
- [[Space/Sources/Papers/๐Stan manual on auto param tuning in warmup]] - MCMC tuning
- [[๐Burkner23_Bayesian model taxonomy]] - Model taxonomy
- [[Space/Sources/Papers/๐Margossian24_nested_rhat]] - Convergence diagnostics
- [[๐๐พ_mansinghka25_automate(formalization, programming)]] - Automated inference
**Core idea**: Efficient computation enables complex models
---
### 3. ๐ Model Building
**Structuring uncertainty**
Related papers:
- [[Space/Sources/Papers/๐Cronin21_synthesize(theory)]] - Theory synthesis
- [[๐๐ข_meehl90_appraise(theory, amendments)]] - Theory appraisal
- [[๐๐พ_meehl67_test(theory, method)]] - Theory testing
**Core idea**: Models as scientific tools
---
### 4. ๐ฏ Decision Theory
**Optimal choices under uncertainty**
Related papers:
- [[Space/Sources/Papers/๐Walters23_invest_beh_epis_alea]] - Epistemic and aleatory uncertainty
- [[๐Hullman_How far can exchangeability get us toward agreeing on individual probability?]] - Exchangeability
- [[Space/Sources/Papers/๐Phillips19_How We Know What Not To Think]] - Negative knowledge
**Core idea**: Decisions require probability
---
### 5. ๐ฌ Experimental Design
**Learning efficiently**
Related papers:
- [[๐๐
_kerr14_systematize(experimentation, entrepreneurship)]] - Systematic experimentation
- [[๐๐
_camuffo25_experiment(beliefs, entrepreneurs)]] - Belief experiments
- [[๐๐พ_camuffo19_structure(experiments, learning)]] - Structured learning
**Core idea**: Experiment to learn
---
### 6. โ๏ธ Moral Hazard and Incentives
**Aligning interests**
Related papers:
- [[๐๐
_bolton24_moral_hazard]] - Moral hazard theory
- [[๐Bolton24]] - Bolton's latest work
**Core idea**: Incentives shape behavior
---
### 7. ๐ Portfolio Optimization
**Balancing exploration and exploitation**
Related papers:
- [[๐๐
_loch02_optimize(portfolio, selection)]] - Portfolio selection
- [[๐๐
_kavadias03_sequence(projects, optimization)]] - Project sequencing
- [[๐๐
_dada07_diversify(sourcing, suppliers)]] - Supplier diversification
**Core idea**: Optimize the portfolio, not individual projects
---
### 8. ๐ญ Collective Behavior
**Modeling social dynamics**
Related papers:
- [[๐๐
_granovetter78_model(collective-behavior, thresholds)]] - Threshold models
**Core idea**: Individual to collective
---
## Methodology Focus
### Bayesian Methods
- MCMC (HMC, NUTS)
- Variational inference
- Hierarchical models
### Causal Inference
- DAGs
- Potential outcomes
- Instrumental variables
### Model Comparison
- Cross-validation
- Information criteria
- Bayes factors
## Writing Guide for ๐
CompBayes Papers
### Structure
1. **Question**: What decision/inference problem?
2. **Model**: What probabilistic model captures uncertainty?
3. **Inference**: How do we compute the posterior?
4. **Validation**: How do we check the model?
5. **Decision**: What action follows from inference?
### Language
- Use **probabilistic constructs**: prior, likelihood, posterior, uncertainty
- Emphasize **quantification**: "how much" over "whether"
- Bridge **inference and action**: belief โ decision
### Common Mistakes
โ Model without checking
โ Point estimates without uncertainty
โ Ignoring prior sensitivity
โ No connection to decision
## Related Fields
- [[4๐พCognition]] - Bayesian cognition
- [[1๐ขInnovation]] - Uncertainty in innovation
- [[3๐Operations]] - Probabilistic operations
## Key Papers by Theme
![[papers.base#papers-cba]]
---
> *"ๆบํ๋ก์ด ๋จธ๋ฆฌ - ๋ฐ์ดํฐ ๊ธฐ๋ฐ ์์ฌ๊ฒฐ์ ์ผ๋ก ์ ์ ํฌ์ํ๋ค"*