Here's a comprehensive summary table of our paper's structure with key contributions and tables:
## ๐ Paper Structure: Optimal Ignorance Level Framework
|Section|Content|Core Message|Tables/Tools|
|---|---|---|---|
|**1. Introduction**||||
|1.1|Tesla earned precision, Better Place assumed it|๐ Tesla survived through ambiguity; Better Place died defending specificity||
|1.2|Problem: Exogenous P and informativeness|โ ๏ธ Existing theory treats success probability as given, not designed||
|1.3|Solution: ฯ as endogenous variable|๐ฏ Founders design learning capacity through precision choice||
|1.4|OIL Formula|๐ ฯ* = max{0, โ(V/4i) - 1}||
|1.5|Why matters for founders|๐ชค Precision trap + ๐ง Nail-to-scale toolkit||
|1.6|Why matters for scholars|๐ฌ Endogenizing P via ฯ bridges micro-macro||
|1.7|Three contributions|๐ Endogeneity + ๐ฃ Formula/toolkit + ๐จโ๐ฉโ๐ง Sectoral heterogeneity||
|**2. Theory**||||
|2.1|Part I: Endogeneity [Theorists]|๐ ฯ โ ฮ(ฮผ;ฯ) = ฮผ/(1+ฯ) โ P mechanism|๐๏ธMT: Terrain vs Map|
|2.2|Part II: Formula [Practitioners]|๐ฃ When V<4i: ฯ=0; When Vโฅ4i: earn precision|๐๏ธOT: Operational Tools|
|2.3|Part III: Heterogeneity [Investors]|๐จโ๐ฉโ๐ง R&D (epistemic) vs Consumer (aleatoric)|๐๏ธUT: Uncertainty Types|
|**3. Model**||||
|3.1|M1: Complexity discipline|๐ ฯ* = 1/(c+1) - complexity constrains promises||
|3.2|M2: Empirical Bayes|๐ ฮผ* = 1/(log c + ฮณ) - calibrate aspiration||
|3.3|M2': OIL as decision variable|๐ฎ Full model with ฯ as choice variable||
|**4. Application**||||
|4.1|Tesla case|โ
Low ฯ โ gradual increase โ high ฯ||
|4.2|Better Place case|โ High ฯ from start โ learning trap||
|4.3|Comparative analysis|๐ 3D evolution paths (ฯ, V, i)||
|**5. Discussion**||||
|5.1|Theoretical synthesis|๐ Effectuation (ฯ=0) โ Causation (ฯโโ)||
|5.2|Practical implications|๐ผ Stage-gate for R&D, portfolio for consumer||
|5.3|Future research|๐ฎ Dynamic ฯ trajectories, industry studies||
### ๐ฏ Key Formulas & Concepts
|Concept|Formula/Definition|Meaning|
|---|---|---|
|**Precision (ฯ)**|Prior concentration|Rigidity of promises|
|**Update Capacity**|ฮ(ฮผ;ฯ) = ฮผ/(1+ฯ)|Learning ability|
|**OIL Formula**|ฯ* = max{0, โ(V/4i) - 1}|Optimal precision rule|
|**Phase Transition**|V = 4i boundary|Nail โ Scale threshold|
|**Success Probability**|P = ฯ(1-ฯ)^c|Sell ร Deliver tension|
### ๐ Three Tables (MOUT)
|Table|File Name|Purpose|Target Audience|
|---|---|---|---|
|๐๏ธMT|`table_mountain_terrain.tex`|Literature comparison: endogenous vs exogenous|Theorists|
|๐๏ธOT|`table_operational_tool.tex`|V/i management tools by stage|Practitioners|
|๐๏ธUT|`table_uncertainty_types.tex`|Epistemic/aleatoric ร R&D/consumer|Investors|
This structure shows how precision (ฯ) threads through the entire paper as the central mechanism connecting founder decisions to venture outcomes.