[[09-24|25-09-24]]
| Time Period | Mission Focus | Description |
| ------------------ | ----------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| 2010 Founding | Broad mRNA Platform | Built an ambitious mRNA technology platform aiming to develop transformative medicines across multiple disease areas including cancer, infectious disease, rare diseases, and autoimmune disorders. |
| 2013 - Early 2010s | Focus on Vaccines & Practical Goals | Pivoted to prioritize vaccine development for infectious diseases (e.g., flu, Zika) as more immediate and attainable targets to validate clinical potential. Secured key partnerships like AstraZeneca. |
| 2016-2019 | Clinical Pipeline Expansion | Expanded pipeline with more mRNA therapeutic candidates in oncology, rare disease, and personalized cancer vaccines; became a clinical-stage company. |
| 2020-2021 | COVID-19 Vaccine Emergency Focus | Rapid development and deployment of COVID-19 mRNA vaccine (mRNA-1273) demonstrating breakthrough speed and scale; Moderna became a major commercial vaccine company. |
| 2022-Present | Diversification & Long-Term Growth | Post-pandemic strategy focuses on diversifying mRNA pipeline including RSV, flu, cancer vaccines, and rare diseases, while leveraging AI and digital innovation to accelerate drug discovery. |
### 2. **실제 사례: Moderna vs Theranos**
**Moderna (τ 우선 전략)**
- 초기 μ: "개인맞춤 암 백신" (과도한 목표)
- 낮은 τ 유지: "pivot fearlessly" 문화
- 결과: mRNA 플랫폼으로 피벗 → COVID 백신 성공
**Theranos (μ 우선 전략)**
- 완벽한 μ: "한 방울로 모든 검사" (기술적으로 명확)
- 극단적 τ: 비밀주의, 피드백 차단
- 결과: 90억 달러 가치 → 0
-
**"τ First, μ Second" 원칙**
1. 먼저 학습 능력 확보 (low τ)
2. 시장 피드백으로 목표 조정 (μ calibration)
3. 검증 후 precision 증가 (τ↑)
**역순은 치명적**:
- High τ → Low learning → μ 고착 → 실패
�� 비대칭성의 본질
### 1. **정보 처리 계층**
```
τ = 정보 처리 능력 (HOW to learn)
μ = 처리할 정보 내용 (WHAT to learn)
HOW가 망가지면 WHAT은 무의미
HOW가 건전하면 WHAT은 교정 가능
```