# 6. ์ฐธ๊ณ ๋ฌธํ—Œ ย Agrawal, A., Gans, J., & Goldfarb, A. (2024). The economics of artificial intelligence: An agenda. University of Chicago Press. Alvarez, S. A., & Barney, J. B. (2007). Discovery and creation: Alternative theories of entrepreneurial action. Strategic Entrepreneurship Journal, 1(1โ€2), 11-26. Benabou, R., & Tirole, J. (2016). Mindful economics: The production, consumption, and value of beliefs. Journal of Economic Perspectives, 30(3), 141-164. Box, G. E. (1980). Sampling and Bayes' inference in scientific modelling and robustness. Journal of the Royal Statistical Society, 143(4), 383-430. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press. Camuffo, A., Cordova, A., Gambardella, A., & Spina, C. (2020). A scientific approach to entrepreneurial decision making. Management Science, 66(2), 564-586. Cyert, R. M., & March, J. G. (1963). A behavioral theory of the firm. Prentice-Hall. Fine, C., Padurean, L., & Naumov, S. (2022). Entrepreneurial operations: A review and agenda. Manufacturing & Service Operations Management, 24(5), 2365-2381. Garud, R., Gehman, J., & Giuliani, A. P. (2014). Contextualizing entrepreneurial innovation. Research Policy, 43(7), 1177-1191. Gelman, A., & Shalizi, C. R. (2013). Philosophy and the practice of Bayesian statistics. British Journal of Mathematical and Statistical Psychology, 66(1), 8-38. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2008). Bayesian data analysis. Chapman and Hall/CRC. Ho, S. (2022). Multi-agent coordination through shared beliefs. Journal of Economic Theory, 199, 105-134. Jaynes, E. T. (2003). Probability theory: The logic of science. Cambridge University Press. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263-291. Kleiman-Weiner, M., Ho, M. K., Austerweil, J. L., Littman, M. L., & Tenenbaum, J. B. (2016). Coordinate to cooperate or compete. Topics in Cognitive Science, 8(2), 413-428. Knight, F. H. (1921). Risk, uncertainty and profit. Houghton Mifflin. MacKay, D. J. (1992). Bayesian interpolation. Neural Computation, 4(3), 415-447. Nanda, R. (2024). Entrepreneurial experimentation. Annual Review of Financial Economics, 16, 223-244. Sarasvathy, S. D. (2001). Causation and effectuation. Academy of Management Review, 26(2), 243-263. Savage, L. J. (1954). The foundations of statistics. John Wiley & Sons. Schumpeter, J. A. (1934). The theory of economic development. Harvard University Press. Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning systems.ย _Advances in neural information processing systems_,ย _28_. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379-423. Taylor, F. W. (1911). The principles of scientific management. Harper & Brothers. Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509-533. Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind. Science, 331(6022), 1279-1285. Terwiesch, C., & Ulrich, K. (2009). Innovation tournaments. Harvard Business Press. Weick, K. E. (1995). Sensemaking in organizations. Sage Publications. Zellweger, T., & Zenger, T. (2023). Entrepreneurs as scientists: A pragmatist approach to producing value out of uncertainty.ย _Academy of Management Review_,ย _48_(3), 379-408. # 7. ๋ถ€๋ก: ๋ช…์ œ์ฆ๋ช… ### **๋ช…์ œ 1** V_sd>> V_snd, V_ns์ด๊ณ  n=1์ผ ๋•Œ, ์ตœ์  ์•ฝ์† ์ˆ˜์ค€์€ ฯ†* = (V_sd - V_ns)/2(V_sd - V_snd)์ด๋‹ค. ์žฌ๋ฌด์  ์ธ์„ผํ‹ฐ๋ธŒ๋งŒ์œผ๋กœ๋Š” ์ตœ๋Œ€ ์•ฝ์†์„ ํ–ฅํ•ด ๋‚˜์•„๊ฐ€์ง€๋งŒ, ์šด์˜์  ์ œ์•ฝ์€ ๋‚ด๋ถ€ ์ตœ์ ์„ ๋งŒ๋“ ๋‹ค. **์ฆ๋ช…:** 1. **๊ธฐ๋Œ€ ํšจ์šฉ ํ•จ์ˆ˜(Expected Utility Function) ์ •์˜:** ๊ธฐ์—…๊ฐ€์˜ ๊ธฐ๋Œ€ ํšจ์šฉ `E[U(ฯ†)]`๋Š” ์„ธ ๊ฐ€์ง€ ์ƒํ˜ธ ๋ฐฐํƒ€์ ์ธ ๊ฒฐ๊ณผ์˜ ๊ฐ€์ค‘ ํ‰๊ท ์œผ๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค. - **ํŒ๋งค ๋ฐ ์ดํ–‰ (Sell & Deliver):** ๊ฐ€์น˜ `V_sd`, ํ™•๋ฅ  `p(ฯ†)d(ฯ†)` - **ํŒ๋งค ํ›„ ๋ฏธ์ดํ–‰ (Sell & Not Deliver):** ๊ฐ€์น˜ `V_snd`, ํ™•๋ฅ  `p(ฯ†)(1-d(ฯ†))` - **๋ฏธํŒ๋งค (Not Sell):** ๊ฐ€์น˜ `V_ns`, ํ™•๋ฅ  `1-p(ฯ†)` ๋”ฐ๋ผ์„œ ๊ธฐ๋Œ€ ํšจ์šฉ ํ•จ์ˆ˜๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. `E[U(ฯ†)] = p(ฯ†)d(ฯ†)V_sd + p(ฯ†)(1-d(ฯ†))V_snd + (1-p(ฯ†))V_ns` 2. **๋ชจ์ˆ˜(Parameter) ์„ค์ •:** ๋ช…์ œ์˜ ์กฐ๊ฑด์— ๋”ฐ๋ผ ๋‹ค์Œ์„ ๊ฐ€์ •ํ•˜๊ณ  ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. - ์•ฝ์† ์ˆ˜์ค€ `ฯ†`๊ฐ€ ํŒ๋งค ํ™•๋ฅ ๊ณผ ๊ฐ™๋‹ค๊ณ  ๊ฐ€์ •: `p(ฯ†) = ฯ†`. ์ด๋Š” ์•ฝ์†์„ ๋†’๊ฒŒ ํ• ์ˆ˜๋ก ์‹œ์žฅ์˜ ๋ฐ˜์‘(ํŒ๋งค)์ด ์„ ํ˜•์ ์œผ๋กœ ์ฆ๊ฐ€ํ•จ์„ ์˜๋ฏธํ•˜๋Š” ๊ฐ€์žฅ ๊ธฐ๋ณธ์ ์ธ ๊ฐ€์ •์ž…๋‹ˆ๋‹ค. - ์šด์˜ ๋ณต์žก์„ฑ `n=1`์ด๋ฏ€๋กœ, ์ดํ–‰ ํ™•๋ฅ ์€ `d(ฯ†) = (1-ฯ†)^1 = 1-ฯ†` ์ž…๋‹ˆ๋‹ค. 3. **๊ธฐ๋Œ€ ํšจ์šฉ ํ•จ์ˆ˜ ์ „๊ฐœ:** ์œ„ ๊ฐ€์ •์„ ๋Œ€์ž…ํ•˜์—ฌ ํ•จ์ˆ˜๋ฅผ `ฯ†`์— ๋Œ€ํ•ด ์ •๋ฆฌํ•ฉ๋‹ˆ๋‹ค. `E[U(ฯ†)] = ฯ†(1-ฯ†)V_sd + ฯ†(1-(1-ฯ†))V_snd + (1-ฯ†)V_ns` `E[U(ฯ†)] = (ฯ†-ฯ†ยฒ)V_sd + ฯ†ยฒV_snd + V_ns - ฯ†V_ns` 4. **์ตœ์ ํ™” (1๊ณ„ ์กฐ๊ฑด):** ๊ธฐ๋Œ€ ํšจ์šฉ์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ์ตœ์  ์•ฝ์† ์ˆ˜์ค€ `ฯ†*`๋ฅผ ์ฐพ๊ธฐ ์œ„ํ•ด, ํ•จ์ˆ˜๋ฅผ `ฯ†`์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๊ณ  ๊ทธ ๊ฐ’์„ 0์œผ๋กœ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค (1๊ณ„ ์กฐ๊ฑด, First-Order Condition). `d/dฯ† [E[U(ฯ†)]] = (1-2ฯ†)V_sd + 2ฯ†V_snd - V_ns = 0` 5. **`ฯ†`์— ๋Œ€ํ•œ ์ •๋ฆฌ:** ์œ„ ์‹์„ `ฯ†`์— ๋Œ€ํ•ด ์ •๋ฆฌํ•ฉ๋‹ˆ๋‹ค. `V_sd - V_ns = 2ฯ†V_sd - 2ฯ†V_snd` `V_sd - V_ns = 2ฯ†(V_sd - V_snd)` `ฯ†* = (V_sd - V_ns) / (2(V_sd - V_snd))` ### **๋ช…์ œ 2 V_ns = V_snd = 0์ผ ๋•Œ, ์ตœ์  ์•ฝ์† ์ˆ˜์ค€์€ ฯ†* = 1/(n+1)์ด๋‹ค. ์šด์˜ ๋ณต์žก์„ฑ n์ด ์ตœ์  ์•ฝ์† ์ˆ˜์ค€์„ ๊ฒฐ์ •ํ•œ๋‹ค--๋” ๋†’์€ ๋ณต์žก์„ฑ์€ ๋” ๋ณด์ˆ˜์ ์ธ ์•ฝ์†์œผ๋กœ ์ด์–ด์ง„๋‹ค. **์ฆ๋ช…:** 1. **๊ธฐ๋Œ€ ํšจ์šฉ ํ•จ์ˆ˜(Expected Utility Function) ์ •์˜:** ๋ช…์ œ์˜ ์กฐ๊ฑด `V_ns = V_snd = 0`์„ ์ผ๋ฐ˜ ๊ธฐ๋Œ€ ํšจ์šฉ ํ•จ์ˆ˜์— ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ํŒ๋งค์— ์‹คํŒจํ•˜๊ฑฐ๋‚˜ ์ดํ–‰์— ์‹คํŒจํ•  ๊ฒฝ์šฐ์˜ ๊ฐ€์น˜๊ฐ€ 0์ž„์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ์ด ๊ฒฝ์šฐ ํšจ์šฉ์€ 'ํŒ๋งค ๋ฐ ์ดํ–‰'์˜ ๊ฒฝ์šฐ์—๋งŒ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. `E[U(ฯ†)] = p(ฯ†)d(ฯ†)V_sd + p(ฯ†)(1-d(ฯ†))*0 + (1-p(ฯ†))*0` `E[U(ฯ†)] = p(ฯ†)d(ฯ†)V_sd` 2. **๋ชจ์ˆ˜(Parameter) ์„ค์ •:** ๋‹ค์‹œ `p(ฯ†) = ฯ†`๋กœ ๊ฐ€์ •ํ•˜๊ณ , ์ผ๋ฐ˜์ ์ธ ์ดํ–‰ ํ™•๋ฅ  `d(ฯ†) = (1-ฯ†)^n`์„ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. `V_sd`๋Š” ์–‘์˜ ์ƒ์ˆ˜์ž…๋‹ˆ๋‹ค. `E[U(ฯ†)] = ฯ†(1-ฯ†)^n V_sd` 3. **์ตœ์ ํ™” ๋ฌธ์ œ๋กœ์˜ ๋ณ€ํ™˜:** `V_sd`๋Š” `ฯ†`์™€ ๋ฌด๊ด€ํ•œ ์ƒ์ˆ˜์ด๋ฏ€๋กœ, ์œ„ ํ•จ์ˆ˜๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๊ฒƒ์€ `f(ฯ†) = ฯ†(1-ฯ†)^n`์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. 4. **์ตœ์ ํ™” (1๊ณ„ ์กฐ๊ฑด):** `f(ฯ†)`๋ฅผ `ฯ†`์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜์—ฌ 0์œผ๋กœ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ณฑ์˜ ๋ฏธ๋ถ„๋ฒ•์„ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. `f'(ฯ†) = d/dฯ† [ฯ†(1-ฯ†)^n]` `f'(ฯ†) = 1 * (1-ฯ†)^n + ฯ† * [n(1-ฯ†)^(n-1) * (-1)]` `f'(ฯ†) = (1-ฯ†)^n - nฯ†(1-ฯ†)^(n-1)` ๊ณตํ†ต ์ธ์ˆ˜ `(1-ฯ†)^(n-1)`๋กœ ๋ฌถ์–ด ์ •๋ฆฌํ•ฉ๋‹ˆ๋‹ค. `f'(ฯ†) = (1-ฯ†)^(n-1) * [(1-ฯ†) - nฯ†]` `f'(ฯ†) = (1-ฯ†)^(n-1) * [1 - (n+1)ฯ†]` 5. **`ฯ†*` ๋„์ถœ:** `f'(ฯ†) = 0`์ด ๋˜๋Š” `ฯ†`๋ฅผ ์ฐพ์Šต๋‹ˆ๋‹ค. `0 < ฯ† < 1` ๋ฒ”์œ„์—์„œ `(1-ฯ†)^(n-1)`๋Š” 0์ด ์•„๋‹ˆ๋ฏ€๋กœ, `[1 - (n+1)ฯ†]` ํ•ญ์ด 0์ด ๋˜์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. `1 - (n+1)ฯ† = 0` `ฯ†* = 1 / (n+1)` ์ด๋Š” ์šด์˜ ๋ณต์žก์„ฑ `n`์ด ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ์ตœ์  ์•ฝ์† ์ˆ˜์ค€ `ฯ†*`์ด ๊ฐ์†Œํ•จ์„ ๋ช…ํ™•ํžˆ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ### **๋ช…์ œ 3 (ํ•™์Šต ํ•จ์ •)** ฮผ(1-ฮผ) < ฮต(ฯ„+1)์ผ ๋•Œ ํ•™์Šต ํ•จ์ •์ด ๋ฐœ์ƒํ•œ๋‹ค. ๋†’์€ ์ •๋ฐ€์„ฑ์€ ์‹ ๋… ์ˆ˜์ •์„ ๋ฐฉ์ง€ํ•˜์—ฌ ์ฆ๊ฑฐ์™€ ๊ด€๊ณ„์—†์ด ๊ตฌ์กฐ์  ๊ฒฝ์ง์„ฑ์„ ๋งŒ๋“ ๋‹ค. **์ฆ๋ช…:** 1. **์‹ ๋…์˜ ํ™•๋ฅ ์  ์ •์˜:** ๊ธฐ์—…๊ฐ€์˜ ์‹ ๋…(belief)์€ ์•ฝ์† ์ดํ–‰ ์ˆ˜์ค€ `ฯ†`์— ๋Œ€ํ•œ ํ™•๋ฅ  ๋ถ„ํฌ๋กœ ๋ชจ๋ธ๋ง๋ฉ๋‹ˆ๋‹ค. ์ด๋•Œ Beta ๋ถ„ํฌ `ฯ† ~ Beta(ฮฑ, ฮฒ)`๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, ๋ชจ์ˆ˜ `ฮผ`(ํฌ๋ถ€, ํ‰๊ท )์™€ `ฯ„`(์ •๋ฐ€์„ฑ)๋ฅผ ํ†ตํ•ด `ฮฑ = ฮผฯ„`, `ฮฒ = (1-ฮผ)ฯ„` ๋กœ ํ‘œํ˜„๋ฉ๋‹ˆ๋‹ค. 2. **ํ•™์Šต ๋Šฅ๋ ฅ์˜ ์ •์˜:** ํ•™์Šต ๋Šฅ๋ ฅ, ์ฆ‰ ์ƒˆ๋กœ์šด ์ฆ๊ฑฐ์— ๋ฐ˜์‘ํ•˜์—ฌ ์‹ ๋…์„ ์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๋Šฅ๋ ฅ์€ ์‹ ๋… ๋ถ„ํฌ์˜ ๋ถ„์‚ฐ(variance)์— ์ง์ ‘์ ์œผ๋กœ ๊ด€๋ จ๋ฉ๋‹ˆ๋‹ค. ๋ถ„์‚ฐ์ด ํฌ๋‹ค๋Š” ๊ฒƒ์€ ๋ถˆํ™•์‹ค์„ฑ์ด ๋†’๊ณ  ์ƒˆ๋กœ์šด ์ •๋ณด๋ฅผ ๋ฐ›์•„๋“ค์ผ ์—ฌ์ง€๊ฐ€ ๋งŽ๋‹ค๋Š” ์˜๋ฏธ์ž…๋‹ˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ ๋ถ„์‚ฐ์ด ์ž‘๋‹ค๋Š” ๊ฒƒ์€ ์‹ ๋…์ด ํ™•๊ณ ํ•˜์—ฌ ์ž˜ ๋ณ€ํ•˜์ง€ ์•Š์Œ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. 3. **ํ•™์Šต ํ•จ์ •์˜ ์ˆ˜ํ•™์  ์ •์˜:** 'ํ•™์Šต ํ•จ์ •'์€ ์‹ ๋… ๋ถ„ํฌ์˜ ๋ถ„์‚ฐ์ด ํŠน์ • ์ž„๊ณ„๊ฐ’ `ฮต` ์ดํ•˜๋กœ ๋–จ์–ด์ ธ, ์‚ฌ์‹ค์ƒ ์‹ ๋…์˜ ์ˆ˜์ •์ด ๋ถˆ๊ฐ€๋Šฅํ•ด์ง€๋Š” ๊ตฌ์กฐ์  ๊ฒฝ์ง์„ฑ ์ƒํƒœ๋กœ ์ •์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. `Var(ฯ†) < ฮต` 4. **Beta ๋ถ„ํฌ ๋ถ„์‚ฐ ๊ณต์‹ ์ ์šฉ:** `Beta(ฮผฯ„, (1-ฮผ)ฯ„)` ๋ถ„ํฌ์˜ ๋ถ„์‚ฐ ๊ณต์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. `Var(ฯ†) = ฮฑฮฒ / [(ฮฑ+ฮฒ)ยฒ(ฮฑ+ฮฒ+1)] = (ฮผฯ„)(1-ฮผ)ฯ„ / [(ฯ„)ยฒ(ฯ„+1)] = ฮผ(1-ฮผ) / (ฯ„+1)` 5. **๋ช…์ œ ๋„์ถœ:** ํ•™์Šต ํ•จ์ •์˜ ์ •์˜ `Var(ฯ†) < ฮต`์— ๋ถ„์‚ฐ ๊ณต์‹์„ ๋Œ€์ž…ํ•ฉ๋‹ˆ๋‹ค. `ฮผ(1-ฮผ) / (ฯ„+1) < ฮต` ์–‘๋ณ€์— `(ฯ„+1)`์„ ๊ณฑํ•˜์—ฌ ์ •๋ฆฌํ•˜๋ฉด ๋ช…์ œ์˜ ์กฐ๊ฑด์ด ์ง์ ‘์ ์œผ๋กœ ์œ ๋„๋ฉ๋‹ˆ๋‹ค. `ฮผ(1-ฮผ) < ฮต(ฯ„+1)` ์ด๋Š” ํฌ๋ถ€ `ฮผ`๊ฐ€ ๊ทน๋‹จ(0 ๋˜๋Š” 1)์— ๊ฐ€๊น๊ฑฐ๋‚˜ ์ •๋ฐ€์„ฑ `ฯ„`๊ฐ€ ๋งค์šฐ ๋†’์„ ๋•Œ, ์ขŒ๋ณ€์ด ์ž‘์•„์ ธ ํ•™์Šต ํ•จ์ •์— ๋น ์ง€๊ธฐ ์‰ฌ์›€์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ### **๋ช…์ œ 4 (์ตœ์  ์•„ํ‚คํ…์ฒ˜)** ๊ณต๋™ ์ตœ์ ์€ (ฮผ*, ฯ„*) = (1/(n+1), Vยทn/[c(n+1)ยฒ] - 1)์ด๋‹ค. ํฌ๋ถ€๋Š” ์šด์˜ ๋ณต์žก์„ฑ์— ์˜ํ•ด ๊ฒฐ์ •๋˜๊ณ , ์ •๋ฐ€์„ฑ์€ ๊ฐ€์น˜/๋น„์šฉ ๋น„์œจ์— ์˜ํ•ด ๊ฒฐ์ •๋œ๋‹ค. **์ฆ๋ช…:** ์ตœ์  ์•„ํ‚คํ…์ฒ˜ `(ฮผ*, ฯ„*)`๋Š” ๊ธฐ๋Œ€ ๋ณด์ƒ์—์„œ ์‹ ๋… ํ˜•์„ฑ ๋น„์šฉ์„ ๋บ€ ์ „์ฒด ํšจ์šฉ ํ•จ์ˆ˜ `L(ฮผ, ฯ„) = E[V(ฯ†)] - C(ฯ„)`๋ฅผ ์ตœ๋Œ€ํ™”ํ•จ์œผ๋กœ์จ ๋„์ถœ๋ฉ๋‹ˆ๋‹ค. ์—ฌ๊ธฐ์„œ ๊ธฐ๋Œ€ ๋ณด์ƒ `E[V(ฯ†)]`๋Š” `V * E[ฯ†(1-ฯ†)^n]`์ด๋ฉฐ, ๋น„์šฉ ํ•จ์ˆ˜ `C(ฯ„)`๋Š” `c * ln(ฯ„+1)`๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค. ์ตœ์ ํ™”๋Š” `ฮผ`์™€ `ฯ„`์— ๋Œ€ํ•ด ์ˆœ์ฐจ์ ์œผ๋กœ ์ง„ํ–‰๋ฉ๋‹ˆ๋‹ค. **1. ์ตœ์  ํฌ๋ถ€(`ฮผ*`)์˜ ๊ฒฐ์ •** ๋จผ์ €, ์ฃผ์–ด์ง„ ์ •๋ฐ€์„ฑ `ฯ„`์— ๋Œ€ํ•ด ํšจ์šฉ ํ•จ์ˆ˜ `L`์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ์ตœ์  ํฌ๋ถ€ `ฮผ*`๋ฅผ ์ฐพ์Šต๋‹ˆ๋‹ค. ๋น„์šฉ ํ•จ์ˆ˜ `C(ฯ„)`๋Š” `ฮผ`์™€ ๋ฌด๊ด€ํ•˜๋ฏ€๋กœ, `L`์„ `ฮผ`์— ๋Œ€ํ•ด ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๊ฒƒ์€ ๊ธฐ๋Œ€ ๋ณด์ƒ `E[V(ฯ†)]`๋ฅผ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. ๊ธฐ๋Œ€ ๋ณด์ƒ์€ ๋ณด์ƒ ํ•จ์ˆ˜ `V(ฯ†)`๊ฐ€ ์ตœ๋Œ€๊ฐ€ ๋˜๋Š” ์ง€์ ์— ์‹ ๋… ๋ถ„ํฌ์˜ ํ‰๊ท  `ฮผ`๊ฐ€ ์œ„์น˜ํ•  ๋•Œ ์ตœ๋Œ€ํ™”๋ฉ๋‹ˆ๋‹ค. ๋ช…์ œ 2์˜ ์ฆ๋ช…์—์„œ ๋ณด์•˜๋“ฏ์ด, ๋ณด์ƒ ํ•จ์ˆ˜ `f(ฯ†) = ฯ†(1-ฯ†)^n`์˜ ์ตœ์ ์ ์€ `ฯ†* = 1/(n+1)` ์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๊ธฐ๋Œ€ ๋ณด์ƒ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ์ตœ์ ์˜ ํฌ๋ถ€๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. `ฮผ* = 1 / (n+1)` ์ด ๊ฒฐ๊ณผ๋Š” ์ตœ์ ์˜ ํฌ๋ถ€ ์ˆ˜์ค€์ด ์˜ค์ง ์šด์˜์˜ ๊ตฌ์กฐ์  ํŠน์„ฑ์ธ ๋ณต์žก์„ฑ `n`์— ์˜ํ•ด์„œ๋งŒ ๊ฒฐ์ •๋จ์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. **2. ์ตœ์  ์ •๋ฐ€์„ฑ(`ฯ„*`)์˜ ๊ฒฐ์ •** ๋‹ค์Œ์œผ๋กœ, `ฮผ`๋ฅผ `ฮผ* = 1/(n+1)`๋กœ ๊ณ ์ •ํ•œ ์ƒํƒœ์—์„œ ํšจ์šฉ ํ•จ์ˆ˜ `L`์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ์ตœ์  ์ •๋ฐ€์„ฑ `ฯ„*`๋ฅผ ์ฐพ์Šต๋‹ˆ๋‹ค. ํ•ด์„์  ํ•ด๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด, ๊ธฐ๋Œ€ ๋ณด์ƒ `E[V(ฯ†)]`๋ฅผ `ฮผ*` ๊ทผ๋ฐฉ์—์„œ 2์ฐจ ํ…Œ์ผ๋Ÿฌ ์ „๊ฐœ๋ฅผ ํ†ตํ•ด ๊ทผ์‚ฌํ•ฉ๋‹ˆ๋‹ค. `E[V(ฯ†)] โ‰ˆ V * [f(ฮผ*) + (1/2)f''(ฮผ*)Var(ฯ†)]` Beta ๋ถ„ํฌ์˜ ๋ถ„์‚ฐ `Var(ฯ†) = ฮผ*(1-ฮผ*)/(ฯ„+1)`๋ฅผ ๋Œ€์ž…ํ•˜์—ฌ `ฯ„`์— ๋Œ€ํ•œ ํšจ์šฉ ํ•จ์ˆ˜๋ฅผ ์ •๋ฆฌํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. `L(ฯ„) โ‰ˆ V * [f(ฮผ*) + (1/2)f''(ฮผ*) * (ฮผ*(1-ฮผ*)/(ฯ„+1))] - c * ln(ฯ„+1)` `L(ฯ„)`๋ฅผ `ฯ„`์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜์—ฌ 1๊ณ„ ์กฐ๊ฑด(FOC)์„ ๊ตฌํ•˜๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. `dL/dฯ„ = V * [(-1/2)f''(ฮผ*)ฮผ*(1-ฮผ*)] / (ฯ„+1)ยฒ - c/(ฯ„+1) = 0` `ฯ„ + 1`์— ๋Œ€ํ•ด ์ •๋ฆฌํ•˜๋ฉด, `ฯ„ + 1 = (V/c) * [(-1/2)f''(ฮผ*)ฮผ*(1-ฮผ*)]` ์—ฌ๊ธฐ์„œ `[...]` ์•ˆ์˜ '๋ฏผ๊ฐ๋„ ํ•ญ'์€ ๋ถˆํ™•์‹ค์„ฑ ๊ฐ์†Œ์— ๋”ฐ๋ฅธ ํ•œ๊ณ„ ์ด์ต์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ๋ณธ ๋ชจ๋ธ์˜ ํ•ต์‹ฌ์ ์ธ ์ด๋ก ์  ๋‹จ๊ณ„๋Š” ์ด ๋ฏผ๊ฐ๋„ ํ•ญ์„ `n/(n+1)ยฒ`๋กœ ๊ทผ์‚ฌํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ด ๊ทผ์‚ฌ๋Š” `n=1, 2`์—์„œ ์ •ํ™•ํžˆ ์ผ์น˜ํ•˜๋ฉฐ, ๋ชจ๋“  `n`์— ๋Œ€ํ•ด ์งˆ์  ๋™์งˆ์„ฑ์„ ์œ ์ง€ํ•ฉ๋‹ˆ๋‹ค. ๋” ์ค‘์š”ํ•œ ๊ฒƒ์€, ๊ทผ์‚ฌ์น˜ `n/(n+1)ยฒ`๋Š” ๊ณผ์—…์˜ '๋‚ด์žฌ์  ๋ถˆํ™•์‹ค์„ฑ'์„ ๋‚˜ํƒ€๋‚ด๋Š” `ฮผ*(1-ฮผ*)`์™€ ์ˆ˜ํ•™์ ์œผ๋กœ ๋™์ผํ•˜๋‹ค๋Š” ์ ์ž…๋‹ˆ๋‹ค. ์ด ์ด๋ก ์  ๊ฐ„์†Œํ™”๋ฅผ ํ†ตํ•ด ์œ„ ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ง๊ด€์ ์ธ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜๋ฉ๋‹ˆ๋‹ค. `ฯ„ + 1 โ‰ˆ (V/c) * ฮผ*(1-ฮผ*)` ์ด๋Š” **"์š”๊ตฌ๋˜๋Š” ์ •๋ฐ€์„ฑ(`ฯ„+1`)์€ ๊ฐ€์น˜-๋น„์šฉ ๋น„์œจ(`V/c`)๊ณผ ๊ณผ์—…์˜ ๋‚ด์žฌ์  ๋ถˆํ™•์‹ค์„ฑ(`ฮผ*(1-ฮผ*)`)์˜ ๊ณฑ์— ๋น„๋ก€ํ•œ๋‹ค"**๋Š” ๊ฐ•๋ ฅํ•œ ๊ฒฝ์ œ์  ๋…ผ๋ฆฌ๋ฅผ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค. `ฮผ*(1-ฮผ*) = n/(n+1)ยฒ`๋ฅผ ๋Œ€์ž…ํ•˜์—ฌ `ฯ„*`๋ฅผ ๊ตฌํ•˜๋ฉด, `ฯ„ + 1 โ‰ˆ Vยทn / [c(n+1)ยฒ]` `ฯ„* โ‰ˆ Vยทn / [c(n+1)ยฒ] - 1` ์ •๋ฐ€์„ฑ์€ ์Œ์ˆ˜๊ฐ€ ๋  ์ˆ˜ ์—†์œผ๋ฏ€๋กœ, ์ตœ์ข…์ ์ธ ์ตœ์  ์ •๋ฐ€์„ฑ์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. `ฯ„* = max{0, Vยทn/[c(n+1)ยฒ] - 1}` ์ด ๊ฒฐ๊ณผ๋Š” ์ตœ์  ์ •๋ฐ€์„ฑ์ด ๊ฐ€์น˜(`V`)์™€ ๋น„์šฉ(`c`)์˜ ๋น„์œจ์— ์ง์ ‘์ ์œผ๋กœ ์˜ํ–ฅ์„ ๋ฐ›์œผ๋ฉฐ, ๋™์‹œ์— ์šด์˜ ๋ณต์žก์„ฑ(`n`)์— ์˜ํ•ด ์กฐ์ ˆ๋จ์„ ๋ช…ํ™•ํžˆ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ณต์žก์„ฑ `n`์ด ์ฆ๊ฐ€ํ•˜๋ฉด `ฮผ*`๊ฐ€ 0์— ๊ฐ€๊นŒ์›Œ์ ธ ๋‚ด์žฌ์  ๋ถˆํ™•์‹ค์„ฑ์ด ๊ฐ์†Œํ•˜๊ณ , ์ด๋Š” ๊ฒฐ๊ณผ์ ์œผ๋กœ ์š”๊ตฌ๋˜๋Š” ์ตœ์  ์ •๋ฐ€์„ฑ `ฯ„*`์˜ ๊ฐ์†Œ๋กœ ์ด์–ด์ง‘๋‹ˆ๋‹ค. ์ด๋Š” ๋ณต์žกํ•œ ๊ณผ์—…์ผ์ˆ˜๋ก ์ •๊ตํ•œ ์‹ ๋…๋ณด๋‹ค ๋ณด์ˆ˜์ ์ธ ํฌ๋ถ€๊ฐ€ ๋” ์ค‘์š”ํ•ด์ง์„ ์‹œ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๊ณต๋™ ์ตœ์  ์•„ํ‚คํ…์ฒ˜ `(ฮผ*, ฯ„*)`๊ฐ€ ์ฆ๋ช…๋˜์—ˆ์Šต๋‹ˆ๋‹ค.