# 2. ์ด๋ก ์  ๋ฐฐ๊ฒฝ: ์•ฝ์† ๊ตฌ์กฐ์˜ ์ด์ค‘ ๊ธด์žฅ๊ณผ ์ง„ํ™”์  ํ•ด๊ฒฐ ## 2.1 ์ฐฝ์—…๊ฐ€์  ์•ฝ์†์˜ ์ˆ˜ํ•™์  ๊ตฌ์กฐ: ์ •๋ณด์ด๋ก ์  ๊ธฐ์ดˆ์™€ ๋ฒ ์ด์ง€์•ˆ ์ •ํ˜•ํ™” ### 2.1.1 ๊ธฐ๋ณธ ๋ชจ๋ธ: Beta ๋ถ„ํฌ์˜ ์ •๋ณด์ด๋ก ์  ์ •๋‹นํ™” ์ฐฝ์—…๊ฐ€์  ์•ฝ์†์˜ ์ˆ˜ํ•™์  ํ‘œํ˜„์€ ๋‹จ์ˆœํ•œ ๊ธฐ์ˆ ์  ์„ ํƒ์ด ์•„๋‹ˆ๋ผ ๊นŠ์€ ์ด๋ก ์  ๊ธฐ์ดˆ๋ฅผ ๊ฐ€์ง„๋‹ค. ์šฐ๋ฆฌ๊ฐ€ Beta(ฮผฯ„, (1-ฮผ)ฯ„) ๋ถ„ํฌ๋ฅผ ์„ ํƒํ•œ ๊ฒƒ์€ ๋‹ค์„ฏ ๊ฐ€์ง€ ์ˆ˜ํ•™์  ์›์น™์— ๊ธฐ๋ฐ˜ํ•œ๋‹ค: **์ฒซ์งธ, ์ตœ๋Œ€ ์—”ํŠธ๋กœํ”ผ ์›์น™ (Jaynes, 2003)**. ์ฃผ์–ด์ง„ ์ œ์•ฝ ์กฐ๊ฑด ํ•˜์—์„œ Beta ๋ถ„ํฌ๋Š” ์ตœ๋Œ€ ์ •๋ณด ์—”ํŠธ๋กœํ”ผ๋ฅผ ๊ฐ€์ง„๋‹ค: H[Beta(ฮฑ, ฮฒ)] = ln B(ฮฑ, ฮฒ) + (ฮฑ-1)ฯˆ(ฮฑ) + (ฮฒ-1)ฯˆ(ฮฒ) - (ฮฑ+ฮฒ-2)ฯˆ(ฮฑ+ฮฒ) where ฯˆ๋Š” digamma ํ•จ์ˆ˜, B๋Š” ๋ฒ ํƒ€ ํ•จ์ˆ˜ ์ด๋Š” ์ฐฝ์—…๊ฐ€๊ฐ€ ๊ฐ€์ง„ ์ •๋ณด ์ด์ƒ์˜ ์ถ”๊ฐ€ ๊ฐ€์ •์„ ํ•˜์ง€ ์•Š๋Š” "์ตœ์†Œ ํŽธํ–ฅ" ํ‘œํ˜„์ด๋‹ค. ์ด๊ฒƒ์ด ์ค‘์š”ํ•œ ์ด์œ ๋Š” Joglekar and Lรฉvesque (2013)๊ฐ€ ์ง€์ ํ•œ "startup environments์˜ ๋ถˆ์•ˆ์ •์„ฑ๊ณผ ๋ถˆํ™•์‹ค์„ฑ"์„ ๊ณผ๋„ํ•œ ๊ตฌ์กฐ ๋ถ€์—ฌ ์—†์ด ํฌ์ฐฉํ•˜๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. **๋‘˜์งธ, ์ผค๋ ˆ์„ฑ (Conjugacy)๊ณผ ๊ณ„์‚ฐ ๊ฐ€๋Šฅ์„ฑ**. Beta ๋ถ„ํฌ๋Š” ์ดํ•ญ ์šฐ๋„์˜ ์ผค๋ ˆ ์‚ฌ์ „๋ถ„ํฌ๋กœ์„œ, ๋ฒ ์ด์ง€์•ˆ ์—…๋ฐ์ดํŠธ๊ฐ€ ๋‹ซํžŒ ํ˜•ํƒœ๋กœ ๊ฐ€๋Šฅํ•˜๋‹ค: Prior: Beta(ฮฑ, ฮฒ) + Likelihood: Binomial(s, n) โ†’ Posterior: Beta(ฮฑ+s, ฮฒ+n-s) ์ด๋Š” ๋‹จ์ˆœํ•œ ๊ณ„์‚ฐ ํŽธ์˜๊ฐ€ ์•„๋‹ˆ๋ผ, ํ•™์Šต ๊ณผ์ •์˜ ์ผ๊ด€์„ฑ์„ ๋ณด์žฅํ•œ๋‹ค. Mueller et al. (2012)์ด ๊ด€์ฐฐํ•œ "startup phase์˜ fragmented activities"๊ฐ€ coherent learning์œผ๋กœ ํ†ตํ•ฉ๋˜๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ œ๊ณตํ•œ๋‹ค. **์…‹์งธ, ์ถฉ๋ถ„ํ†ต๊ณ„๋Ÿ‰๊ณผ ๊ตํ™˜๊ฐ€๋Šฅ์„ฑ (de Finetti, 1937)**. (์„ฑ๊ณต ํšŸ์ˆ˜, ์‹คํŒจ ํšŸ์ˆ˜) ์Œ์ด ์ถฉ๋ถ„ํ†ต๊ณ„๋Ÿ‰์ด ๋˜์–ด, ์‹คํ—˜ ์ˆœ์„œ์™€ ๋ฌด๊ด€ํ•˜๊ฒŒ ์˜์‚ฌ๊ฒฐ์ •์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด๋Š” ์šฐ๋ฆฌ ๋ชจ๋ธ์˜ ํ•ต์‹ฌ์ธ ๊ตํ™˜๊ฐ€๋Šฅ์„ฑ์˜ ์ˆ˜ํ•™์  ๊ธฐ์ดˆ๋ฅผ ์ œ๊ณตํ•œ๋‹ค: P(xโ‚, xโ‚‚, ..., xโ‚™) = โˆซ โˆแตข P(xแตข|ฮธ) P(ฮธ) dฮธ **๋„ท์งธ, ์˜์‚ฌ-๊ด€์ธก์น˜ ํ•ด์„ (Pseudo-count interpretation)**. ฯ„ = ฮฑ + ฮฒ๋Š” "๊ฐ€์ƒ์˜ ์‚ฌ์ „ ๊ด€์ธก ์ˆ˜"๋กœ ํ•ด์„๋˜์–ด, ์ •๋ฐ€๋„๊ฐ€ ์ง๊ด€์  ์˜๋ฏธ๋ฅผ ๊ฐ–๋Š”๋‹ค. ฯ„ = 10์€ 10๋ฒˆ์˜ ์‚ฌ์ „ ์‹คํ—˜๊ณผ ๊ฐ™์€ ํ™•์‹  ์ˆ˜์ค€์„, ฯ„ = 100์€ 100๋ฒˆ์˜ ์‹คํ—˜๊ณผ ๊ฐ™์€ ๊ฒฝ์ง์„ฑ์„ ์˜๋ฏธํ•œ๋‹ค. ์ด๋Š” Gifford (1992)์˜ "limited entrepreneurial attention" ๊ฐœ๋…๊ณผ ์—ฐ๊ฒฐ๋˜์–ด, ์ฃผ์˜ ์ž์›์˜ ์ˆ˜ํ•™์  ํ‘œํ˜„์„ ์ œ๊ณตํ•œ๋‹ค. **๋‹ค์„ฏ์งธ, ๋ถ„์‚ฐ์˜ ํ•ด์„์  ๋‹จ์ˆœ์„ฑ**. ๋ถ„์‚ฐ ฯƒยฒ = ฮผ(1-ฮผ)/(ฯ„+1)์€ ํ‰๊ท ๊ณผ ์ •๋ฐ€๋„์˜ ๋ช…ํ™•ํ•œ ํ•จ์ˆ˜๋กœ, "ํ˜์‹  ๊ณต๊ฐ„"์˜ ์ง์ ‘์  ์ธก์ •์น˜๊ฐ€ ๋œ๋‹ค. ์ด๋Š” Utterback and Abernathy (1975)์˜ "fluid phase"์—์„œ "specific phase"๋กœ์˜ ์ „ํ™˜์„ ์—ฐ์†์ ์œผ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. ### 2.1.2 ์‹œ๊ฐ„ ์—ญํ•™: Prior Predictive Check์—์„œ Posterior Predictive Check๊นŒ์ง€ ์ฐฝ์—… ๊ณผ์ •์˜ ์‹œ๊ฐ„ ๊ตฌ์กฐ๋Š” ์ „ํ†ต์  ์ˆœ๋ฐฉํ–ฅ ์ธ๊ณผ์„ฑ์„ ๋„˜์–ด์„ ๋‹ค. ์šฐ๋ฆฌ๋Š” Gelman et al. (2020)์˜ Bayesian workflow๋ฅผ ์ฐฝ์—… ๋งฅ๋ฝ์— ์ ์šฉํ•˜์—ฌ, ์„ธ ์‹œ์ ์˜ ์ˆœํ™˜ ๊ตฌ์กฐ๋ฅผ ์ œ์‹œํ•œ๋‹ค: **t ์‹œ์ : Prior Predictive Check (๋ฏธ๋ž˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜)** ์ฐฝ์—…๊ฐ€๋Š” ์•ฝ์†์„ ์„ค๊ณ„ํ•˜๊ธฐ ์ „, ๋ฏธ๋ž˜ ์ž์‹ ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•œ๋‹ค. ์ด๋Š” ๋‹จ์ˆœํ•œ ์˜ˆ์ธก์ด ์•„๋‹ˆ๋ผ, ๊ฐ€๋Šฅํ•œ ๋ฏธ๋ž˜๋“ค์˜ ์•™์ƒ๋ธ”์„ ์ƒ์„ฑํ•˜๋Š” ๊ณผ์ •์ด๋‹ค: ``` for i in 1:N_sim ฯ†แตข ~ Beta(ฮผฯ„, (1-ฮผ)ฯ„) # ์•ฝ์† ์ˆ˜์ค€ ์ƒ˜ํ”Œ๋ง sแตข ~ Binomial(n_market, ฯ†แตข ร— S(ฯ†แตข)) # ํŒ๋งค ์‹œ๋ฎฌ๋ ˆ์ด์…˜ dแตข ~ Binomial(n_ops, ฯ†แตข ร— D(ฯ†แตข, n)) # ์ „๋‹ฌ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ successแตข = (sแตข > s_threshold) โˆง (dแตข > d_threshold) end P(success|ฮผ, ฯ„) = mean(success) ``` ์ด ๊ณผ์ •์€ **์‹œ๊ฐ„ ์—ญ์ „์„ฑ P(present|future)**๋ฅผ ๋งŒ๋“ ๋‹ค. ๋ฏธ๋ž˜์˜ ๊ฐ€๋Šฅํ•œ ์ƒํƒœ๋“ค์ด ํ˜„์žฌ์˜ ์•ฝ์† ์„ค๊ณ„๋ฅผ ์ œ์•ฝํ•œ๋‹ค. ์ด๋Š” Loch (2017)๊ฐ€ ๋…ผ์˜ํ•œ "cognitive biases in innovation"์„ ๊ทน๋ณตํ•˜๋Š” ๊ตฌ์กฐ์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด๋‹ค. **t+1 ์‹œ์ : Calibration (ํ˜„์‹ค๊ณผ์˜ ์กฐ์šฐ)** ์‹œ์žฅ ํ”ผ๋“œ๋ฐฑ (sโ‚, sโ‚‚)์™€ ์šด์˜ ํ”ผ๋“œ๋ฐฑ (dโ‚, dโ‚‚)์„ ๊ด€์ฐฐํ•œ ํ›„, simulation-based calibration์„ ์ˆ˜ํ–‰ํ•œ๋‹ค: ``` rank_statistic = P(ฯ†_obs < ฯ†_sim | data) calibration_score = KS_test(rank_statistic, Uniform[0,1]) ``` ์ž˜ ๋ณด์ •๋œ ๋ชจ๋ธ์€ rank statistic์ด ๊ท ๋“ฑ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅธ๋‹ค. ์ด๋Š” Anderson and Parker (2013)์˜ "developer participation uncertainty"๋ฅผ ์ •๋Ÿ‰ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค. **t+2 ์‹œ์ : Posterior Predictive Check (์‹คํ˜„๊ณผ ํ”ผ๋ฒ—)** ์—…๋ฐ์ดํŠธ๋œ ๋ถ„ํฌ Beta(ฮฑ_new, ฮฒ_new)๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ฏธ๋ž˜๋ฅผ ์žฌ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•œ๋‹ค: ``` for j in 1:N_post ฯ†โฑผ ~ Beta(ฮฑ_new, ฮฒ_new) future_successโฑผ = simulate_operations(ฯ†โฑผ, updated_context) end pivot_decision = (var(future_success) > ฯƒยฒ_threshold) ``` ์ด 3๋‹จ๊ณ„ ์ˆœํ™˜์€ Tatikonda et al. (2013)์˜ "startup-growth-stability" ์ƒ์• ์ฃผ๊ธฐ์™€ ๋Œ€์‘๋˜๋‚˜, ์šฐ๋ฆฌ ๋ชจ๋ธ์€ ๊ฐ ๋‹จ๊ณ„๋ฅผ ํ™•๋ฅ ์  ์ถ”๋ก  ๊ณผ์ •์œผ๋กœ ์ •ํ˜•ํ™”ํ•œ๋‹ค. ## 2.2 ์ด์ค‘ ๊ธด์žฅ์˜ ๊ตฌ์กฐ: ํŒ๋งค๊ฐ€๋Šฅ์„ฑ-์ „๋‹ฌ๊ฐ€๋Šฅ์„ฑ๊ณผ ํšจ์œจ์„ฑ-์œ ์—ฐ์„ฑ ### 2.2.1 ์ฒซ ๋ฒˆ์งธ ๊ธด์žฅ: ํŒ๋งค๊ฐ€๋Šฅ์„ฑ vs ์ „๋‹ฌ๊ฐ€๋Šฅ์„ฑ (S-D Tension) McDougall et al. (1992)์€ ์‹ ์ƒ ๋ฒค์ฒ˜๊ฐ€ "unique challenges in developing viable manufacturing strategies"๋ฅผ ์ง๋ฉดํ•œ๋‹ค๊ณ  ์ง€์ ํ–ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด๋ฅผ ํŒ๋งค๊ฐ€๋Šฅ์„ฑ๊ณผ ์ „๋‹ฌ๊ฐ€๋Šฅ์„ฑ์˜ ๊ทผ๋ณธ์  ๊ธด์žฅ์œผ๋กœ ์ •ํ˜•ํ™”ํ•œ๋‹ค. **ํŒ๋งค๊ฐ€๋Šฅ์„ฑ ํ•จ์ˆ˜ S(ฮผ)**: ์‹œ์žฅ์ด ์•ฝ์†์„ ๋งค๋ ฅ์ ์œผ๋กœ ์—ฌ๊ธธ ํ™•๋ฅ ์€ ์•ผ๋ง ์ˆ˜์ค€์— ์ฆ๊ฐ€ํ•œ๋‹ค: S(ฮผ) = 1 - exp(-ฮป_s ร— ฮผ^ฮณ_s) where: - ฮป_s: ์‹œ์žฅ ์ˆ˜์šฉ์„ฑ (market receptivity) - ฮณ_s: ํ˜์‹  ๋ฏผ๊ฐ๋„ (>1์ด๋ฉด ํ˜๋ช…์  ์•ฝ์† ์„ ํ˜ธ) Song et al. (2011)์˜ "product innovativeness"๊ฐ€ ์„ฑ๊ณต๊ณผ ๋น„์„ ํ˜• ๊ด€๊ณ„๋ฅผ ๊ฐ–๋Š”๋‹ค๋Š” ๋ฐœ๊ฒฌ๊ณผ ์ผ์น˜ํ•œ๋‹ค. **์ „๋‹ฌ๊ฐ€๋Šฅ์„ฑ ํ•จ์ˆ˜ D(ฮผ, n)**: ์šด์˜ ์‹คํ˜„ ํ™•๋ฅ ์€ ๋ณต์žก๋„์™€ ์•ผ๋ง์— ๋ฐ˜๋น„๋ก€ํ•œ๋‹ค: D(ฮผ, n) = (1 - ฮผ)^n ร— exp(-ฮบ ร— n ร— ฮผ) where: - n: ์šด์˜ ๋ณต์žก๋„ (Kremer์˜ O-Ring ๋งค๊ฐœ๋ณ€์ˆ˜) - ฮบ: ์กฐ์ • ๋น„์šฉ (coordination cost) ์ด๋Š” Patel (2011)์˜ "manufacturing flexibility"์™€ "organizational formalization" ๊ฐ„ ๊ธด์žฅ์„ ์ˆ˜ํ•™์ ์œผ๋กœ ํ‘œํ˜„ํ•œ๋‹ค. **ํ†ตํ•ฉ ์ตœ์ ํ™”**: ๋ณด์ •๋œ ์„ฑ๊ณต ํ™•๋ฅ  C = S ร— D๋ฅผ ์ตœ๋Œ€ํ™”: โˆ‚C/โˆ‚ฮผ = S'(ฮผ)D(ฮผ,n) + S(ฮผ)D'(ฮผ,n) = 0 ์ด๋กœ๋ถ€ํ„ฐ: ฮผ* = argmax[S(ฮผ) ร— D(ฮผ,n)] ๋‹ซํžŒ ํ˜•ํƒœ ํ•ด: ฮผ* โ‰ˆ 1/(n+1) + O(1/nยฒ) ์ด๋Š” ๋ณต์žก๋„๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ์ตœ์  ์•ผ๋ง์ด ํ•˜์ดํผ๋ณผ๋ฆญํ•˜๊ฒŒ ๊ฐ์†Œํ•จ์„ ๋ณด์—ฌ์ค€๋‹ค. ### 2.2.2 ๋‘ ๋ฒˆ์งธ ๊ธด์žฅ: ํšจ์œจ์„ฑ vs ์œ ์—ฐ์„ฑ (E-F Tension) Van Burg and Van Oorschot (2013)๋Š” "fairness perceptions influence cooperation"์„ ๋…ผ์˜ํ–ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด๋ฅผ ํšจ์œจ์„ฑ(์กฐ์ •์„ ์œ„ํ•œ ๋ช…ํ™•์„ฑ)๊ณผ ์œ ์—ฐ์„ฑ(์ ์‘์„ ์œ„ํ•œ ๋ชจํ˜ธ์„ฑ) ๊ฐ„ ๊ธด์žฅ์œผ๋กœ ํ™•์žฅํ•œ๋‹ค. **ํšจ์œจ์„ฑ ํ•จ์ˆ˜ E(ฯ„)**: ์ดํ•ด๊ด€๊ณ„์ž ์กฐ์ • ํšจ์œจ์„ฑ์€ ์ •๋ฐ€๋„์— ์ฆ๊ฐ€ํ•œ๋‹ค: E(ฯ„) = 1 - exp(-ฮท ร— ฯ„^ฮด) where: - ฮท: ์กฐ์ • ๋ฏผ๊ฐ๋„ - ฮด < 1: ์ˆ˜ํ™•์ฒด๊ฐ (diminishing returns) Y. Li et al. (2011)์˜ "entrepreneurial orientation in supply chain relationships"๊ฐ€ ํŠน์ • ์ˆ˜์ค€ ์ด์ƒ์—์„œ ํ•œ๊ณ„ํšจ์šฉ์ด ๊ฐ์†Œํ•œ๋‹ค๋Š” ๋ฐœ๊ฒฌ๊ณผ ์ผ์น˜ํ•œ๋‹ค. **์œ ์—ฐ์„ฑ ํ•จ์ˆ˜ F(ฯƒยฒ)**: ํ”ผ๋ฒ— ๋Šฅ๋ ฅ์€ ๋ณด์กด๋œ ๋ถ„์‚ฐ์— ๋น„๋ก€ํ•œ๋‹ค: F(ฯƒยฒ) = 1 - exp(-ฮถ ร— ฯƒยฒ) where ฯƒยฒ = ฮผ(1-ฮผ)/(ฯ„+1) Goodale et al. (2011)์˜ "innovation support policies"๊ฐ€ ๊ณผ๋„ํ•œ "process control"๊ณผ ์ถฉ๋Œํ•œ๋‹ค๋Š” ๊ด€์ฐฐ์„ ์ •๋Ÿ‰ํ™”ํ•œ๋‹ค. **๊ท ํ˜• ์กฐ๊ฑด**: ํšจ์œจ์„ฑ๊ณผ ์œ ์—ฐ์„ฑ์˜ ๋น„์œจ์ด ํ™˜๊ฒฝ ์š”๊ตฌ์‚ฌํ•ญ๊ณผ ์ผ์น˜ํ•ด์•ผ ํ•œ๋‹ค: F/E = #T/#X where: - #T: ํ‰๊ฐ€์ง€ํ‘œ ์ˆ˜ (test statistics) - #X: ์ž์› ํ˜•ํƒœ ์ˆ˜ (resource forms) ์ด ๋น„์œจ์ด 1๋ณด๋‹ค ํฌ๋ฉด ํƒ์ƒ‰ ์ง€ํ–ฅ, ์ž‘์œผ๋ฉด ํ™œ์šฉ ์ง€ํ–ฅ์ด ์ ์ ˆํ•˜๋‹ค. ## 2.3 ๊ธฐ์กด ์ด๋ก ๊ณผ์˜ ๋Œ€ํ™”: ํ†ตํ•ฉ๊ณผ ํ™•์žฅ ### 2.3.1 March์˜ ํƒ์ƒ‰-ํ™œ์šฉ: ์—ฐ์†์ฒด๋กœ์˜ ํ™•์žฅ March (1991)์˜ ์ด๋ถ„๋ฒ•์  ๊ตฌ๋ถ„์„ ์šฐ๋ฆฌ๋Š” ฯ„์˜ ์—ฐ์† ์ŠคํŽ™ํŠธ๋Ÿผ์œผ๋กœ ํ™•์žฅํ•œ๋‹ค: **ํƒ์ƒ‰ ์˜์—ญ (ฯ„ < 10)**: - ๋†’์€ ๋ถ„์‚ฐ: ฯƒยฒ > 0.05 - ๋น ๋ฅธ ํ•™์Šต: |ฮ”ฮผ| > 0.1 ๊ฐ€๋Šฅ - Mueller et al. (2012)์˜ "exploration activities in startup phase" **์ „ํ™˜ ์˜์—ญ (10 < ฯ„ < 50)**: - ์ค‘๊ฐ„ ๋ถ„์‚ฐ: 0.01 < ฯƒยฒ < 0.05 - ์„ ํƒ์  ํ•™์Šต: context-dependent updating - Utterback and Abernathy์˜ "transitional phase" **ํ™œ์šฉ ์˜์—ญ (ฯ„ > 50)**: - ๋‚ฎ์€ ๋ถ„์‚ฐ: ฯƒยฒ < 0.01 - ๊ฒฝ์ง๋œ ํ•™์Šต: |ฮ”ฮผ| < 0.01 - "Specific phase"์˜ incremental innovation **ํ•ต์‹ฌ ๊ธฐ์—ฌ**: ฯ„๋ฅผ ์„ค๊ณ„ ๋ณ€์ˆ˜๋กœ ๋งŒ๋“ค์–ด, ํƒ์ƒ‰-ํ™œ์šฉ์ด ์™ธ์ƒ์  ๋‹จ๊ณ„๊ฐ€ ์•„๋‹Œ ์ „๋žต์  ์„ ํƒ์ด ๋˜๋„๋ก ํ•œ๋‹ค. ### 2.3.2 Ghemawat์˜ ๋ชฐ์ž…๊ณผ ๋น„๊ฐ€์—ญ์„ฑ: ๋‚ด์ƒํ™” Ghemawat (1991)์˜ ๋„ค ๊ฐ€์ง€ ๋น„๊ฐ€์—ญ์„ฑ์„ ์•ฝ์† ๊ตฌ์กฐ์˜ ๋‚ด์ƒ์  ๊ฒฐ๊ณผ๋กœ ์žฌํ•ด์„ํ•œ๋‹ค: **1. Lock-in์˜ ์ˆ˜ํ•™์  ํ‘œํ˜„**: P(exit|ฯ„) = exp(-ฯ ร— ฯ„) ๋†’์€ ฯ„๋Š” ํƒˆ์ถœ ํ™•๋ฅ ์„ ์ง€์ˆ˜์ ์œผ๋กœ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. **2. Lock-out์˜ ๋™์—ญํ•™**: ๊ฐ€๋Šฅ ์ „๋žต ๊ณต๊ฐ„: ฮฉ(ฯ„) = {strategies : ฯƒยฒ > ฯƒยฒ_min} |ฮฉ(ฯ„)| โˆ (ฯ„ + 1)^(-1) **3. Lags์˜ ์ •๋Ÿ‰ํ™”**: ํ•™์Šต ์ง€์—ฐ: Lag(ฯ„) = (ฯ„ + 1)/ฮต where ฮต๋Š” ์ตœ์†Œ ๊ฐ์ง€ ๊ฐ€๋Šฅ ๋ณ€ํ™” **4. Inertia์˜ ์กฐ์ง์  ํ‘œํ˜„**: ์กฐ์ง ๊ด€์„ฑ: I(ฯ„) = โˆซโ‚€^ฯ„ (1 - F(ฯƒยฒ(t))) dt ### 2.3.3 ์‹ค๋ฌผ์˜ต์…˜ ์ด๋ก : ๋ถ„์‚ฐ ๊ธฐ๋ฐ˜ ์žฌ๊ตฌ์„ฑ Black-Scholes ๊ณต์‹์„ ์•ฝ์† ๊ตฌ์กฐ์— ๋งž๊ฒŒ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค: **์ „ํ†ต์  ์˜ต์…˜ ๊ฐ€์น˜**: V_BS = Sโ‚€ฮฆ(dโ‚) - Ke^(-rt)ฮฆ(dโ‚‚) **์•ฝ์† ๊ธฐ๋ฐ˜ ์˜ต์…˜ ๊ฐ€์น˜**: V_promise = Market_Size ร— ฮฆ(zโ‚) - Investment ร— exp(-rร—t) ร— ฮฆ(zโ‚‚) where: - zโ‚ = [ln(ฮผ/(1-ฮผ)) + ฯƒยฒt]/โˆš(ฯƒยฒt) - zโ‚‚ = zโ‚ - โˆš(ฯƒยฒt) - ฯƒยฒ = ฮผ(1-ฮผ)/(ฯ„+1) ์ด๋Š” Tanrฤฑsever et al. (2012)์˜ entrepreneurial financing ๋ชจ๋ธ๊ณผ ์—ฐ๊ฒฐ๋˜๋‚˜, ์šฐ๋ฆฌ๋Š” ๋ถˆํ™•์‹ค์„ฑ์„ ์™ธ์ƒ์ ์ด ์•„๋‹Œ ์„ค๊ณ„ ๊ฐ€๋Šฅํ•œ ๊ฒƒ์œผ๋กœ ๋ณธ๋‹ค. ### 2.3.4 Bateson์˜ ์ง„ํ™”๋ก ์  ๊ด€์ : Somatic Flexibility์˜ ๊ฒฝ์ œํ•™ Bateson (1963)์˜ "The Role of Somatic Change in Evolution"์€ ์šฐ๋ฆฌ ๋ชจ๋ธ์˜ ์ง„ํ™”๋ก ์  ๊ธฐ์ดˆ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. **Flexibility์˜ ๋ถ„ํ•  (Fractionation)**: ๊ฐ ์ ์‘์ด ๋ฏธ๋ž˜ ์ ์‘ ๊ณต๊ฐ„์„ ๋ถ„ํ• ํ•œ๋‹ค: S_t+1 = S_t โˆฉ Compatible(adaptation_t) |S_t+1| < |S_t| ์šฐ๋ฆฌ ๋ชจ๋ธ์—์„œ: ฯƒยฒ_t+1 = ฯƒยฒ_t ร— (1 - learning_rate) **Baldwin Effect์˜ ์ฐฝ์—…์  ํ•ด์„**: ์ฒด์„ธํฌ ๋ณ€ํ™”(๋‚ฎ์€ ฯ„ ์‹คํ—˜) โ†’ ์œ ์ „ํ˜• ๊ณ ์ •(๋†’์€ ฯ„ ๋ชฐ์ž…) Stage 1: Somatic exploration (ฯ„ < 10) Stage 2: Partial assimilation (10 < ฯ„ < 30) Stage 3: Genetic fixation (ฯ„ > 30) **Double Bind์™€ ๊ณ„์ธต์  ํ•™์Šต**: ๋ชจ์ˆœ๋œ ์••๋ ฅ์ด ์ƒ์œ„ ์ˆ˜์ค€ ํ•™์Šต์„ ์œ ๋ฐœํ•œ๋‹ค: Level 0: ๋‹จ์ผ ์ตœ์ ํ™” (S ๋˜๋Š” D) Level 1: ์ด์ค‘ ์ตœ์ ํ™” (S์™€ D) Level 2: ๋ฉ”ํƒ€ ์ตœ์ ํ™” (ฯ„ ๊ด€๋ฆฌ) ์ด๋Š” Gaimon and Bailey (2013)์˜ "knowledge management phases"์™€ ๋Œ€์‘๋˜๋‚˜, ์šฐ๋ฆฌ๋Š” ๊ฐ ๋‹จ๊ณ„๋ฅผ ๋ชจ์ˆœ ํ•ด๊ฒฐ ๊ณผ์ •์œผ๋กœ ๋ณธ๋‹ค. ## 2.4 ๋ถˆ๊ฐ€๋Šฅ์„ฑ ์ •๋ฆฌ์™€ ๊ฒฝ๊ณ„ ์กฐ๊ฑด ### 2.4.1 ์ •๋ฆฌ 1: ๊ณ ์ •๋ฐ€ ์—…๋ฐ์ดํŠธ์˜ ๋ถˆ๊ฐ€๋Šฅ์„ฑ **์ •๋ฆฌ**: ฯ„ > ฮผ(1-ฮผ)/ฮต - 1์ผ ๋•Œ, ์˜๋ฏธ ์žˆ๋Š” ๋ฒ ์ด์ง€์•ˆ ์—…๋ฐ์ดํŠธ๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. **์ฆ๋ช…**: ๋ฒ ์ด์ง€์•ˆ ์—…๋ฐ์ดํŠธ ํ›„ ํ‰๊ท  ๋ณ€ํ™”: ฮ”ฮผ = |ฮผ_posterior - ฮผ_prior| = |[(ฮฑ + s)/(ฮฑ + ฮฒ + n)] - [ฮฑ/(ฮฑ + ฮฒ)]| = |s - nฮผ|/(ฮฑ + ฮฒ + n) = |s - nฮผ|/(ฯ„ + n) n โ†’ โˆž์ผ ๋•Œ: ฮ”ฮผ โ†’ |pฬ‚ - ฮผ|/(ฯ„/n + 1) ์˜๋ฏธ ์žˆ๋Š” ์—…๋ฐ์ดํŠธ (ฮ”ฮผ > ฮต)๋ฅผ ์œ„ํ•ด: |pฬ‚ - ฮผ| > ฮต(ฯ„/n + 1) ๊ทธ๋Ÿฌ๋‚˜ ํฐ ์ˆ˜์˜ ๋ฒ•์น™์— ์˜ํ•ด: P(|pฬ‚ - ฮผ| > ฮด) โ†’ 0 as n โ†’ โˆž ๋”ฐ๋ผ์„œ ฯ„ > (1/ฮต - 1) ร— Var(pฬ‚) = ฮผ(1-ฮผ)/ฮต - 1์ผ ๋•Œ, P(ฮ”ฮผ > ฮต) โ†’ 0 **์‹ค์ฆ์  ๊ฒฝ๊ณ„๊ฐ’**: Jiang and Liu (2019)์˜ "managerial optimism" ์—ฐ๊ตฌ๋ฅผ ํ™•์žฅํ•˜์—ฌ: - ์†Œํ”„ํŠธ์›จ์–ด (๊ณผ์‹  ๋†’์Œ): ฯ„_critical โ‰ˆ 50 - ์ œ์กฐ์—… (์ค‘๊ฐ„ ๊ณผ์‹ ): ฯ„_critical โ‰ˆ 30 - ๋ฐ”์ด์˜คํ… (๋ณด์ˆ˜์ ): ฯ„_critical โ‰ˆ 20 ### 2.4.2 ์ •๋ฆฌ 2: ์ „๋žต์  ํ—ˆ์œ„ํ‘œํ˜„์˜ ํ•„์—ฐ์„ฑ **์ •๋ฆฌ**: ฯ„ > ฯ„_critical์ด๊ณ  ์‹ค์ œ ์„ฑ๊ณผ๊ฐ€ ์•ฝ์†๊ณผ ๋‹ค๋ฅผ ๋•Œ, ์ •์งํ•œ ๋ณด๊ณ ๊ฐ€ ๊ฒŒ์ž„์ด๋ก ์ ์œผ๋กœ ์—ด๋“ฑ ์ „๋žต์ด ๋œ๋‹ค. **์ฆ๋ช… (๊ฒŒ์ž„์ด๋ก ์ )**: ์ฐฝ์—…๊ฐ€์˜ ํšจ์šฉํ•จ์ˆ˜: U(report) = P(funding|report) ร— V_continue - C(misrepresentation) where: - P(funding|honest) = ฮฆ((actual - promise)/ฯƒ) when ฯ„ high โ†’ 0 - P(funding|misrep) = ฮฆ((reported - promise)/ฯƒ) โ†’ acceptable - C(misrepresentation) = legal + reputation costs ฯ„ > ฯ„_critical์ผ ๋•Œ: U(misrepresentation) > U(honest) > U(exit) ๋”ฐ๋ผ์„œ misrepresentation์ด ์ง€๋ฐฐ์ „๋žต์ด ๋œ๋‹ค. **์‹ค์ฆ ์‚ฌ๋ก€์˜ ฯ„ ์ธก์ •**: - Theranos: ฯ„ โ‰ˆ 95 (SD = 0.007) "์ •ํ™•ํžˆ 4์‹œ๊ฐ„, ์ •ํ™•ํžˆ 70๊ฐ€์ง€ ๊ฒ€์‚ฌ, ์ •ํ™•ํžˆ ํ•œ ๋ฐฉ์šธ" - Nikola: ฯ„ โ‰ˆ 100 (SD = 0.006) "์ •ํ™•ํžˆ 1,000๋งˆ์ผ, ์ •ํ™•ํžˆ 0 ๋ฐฐ์ถœ" - Tesla: ฯ„_initial โ‰ˆ 5 (SD = 0.14) "๋Œ€๋žต 200๋งˆ์ผ, ์•„๋งˆ๋„ 35,000๋‹ฌ๋Ÿฌ" ## 2.5 MIBE ํ”„๋ ˆ์ž„์›Œํฌ: ๋‹คํ•™์ œ์  ํ†ตํ•ฉ ### 2.5.1 M (Management/Economics): ์‹คํ—˜์—์„œ ์•ฝ์†์œผ๋กœ ์ „ํ†ต ๊ฒฝ์˜ํ•™์€ ์‹คํ—˜์„ ์ •๋ณด ํš๋“์œผ๋กœ ๋ณธ๋‹ค (Gifford, 1992). ์šฐ๋ฆฌ๋Š” ์‹คํ—˜์„ ๋ฏธ๋ž˜ ์ฐฝ์กฐ๋กœ ์žฌ๊ฐœ๋…ํ™”ํ•œ๋‹ค. **์‹คํ—˜ ์„ค๊ณ„ โ†’ ์•ฝ์† ์„ค๊ณ„**: Traditional: max I(X; ฮธ) - Cost(X) Our model: max P(desired_future|promise) - Cost(precision) **์ž์—ฐ ๋ฒ•์น™ ๋ฐœ๊ฒฌ โ†’ ๊ณต์œ  ๊ฒฝํ—˜ ์ฐฝ์กฐ**: - ์ž์—ฐ๊ณผํ•™: ์ฃผ์–ด์ง„ ๋ฒ•์น™ ๋ฐœ๊ฒฌ - ์ฐฝ์—…๊ณผํ•™: ๋งŒ๋“ค์–ด๊ฐˆ ๋ฏธ๋ž˜ ์„ค๊ณ„ ### 2.5.2 I (Information/Bayesian Computation): ์—ญ๋ฐฉํ–ฅ ์ธ๊ณผ์„ฑ Shannon ์—”ํŠธ๋กœํ”ผ๋Š” ๋ฌด์งˆ์„œ ์ฆ๊ฐ€๋ฅผ ์˜ˆ์ธกํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ฐฝ์—…๊ฐ€๊ฐ€ ์Œ์˜ ์—”ํŠธ๋กœํ”ผ๋ฅผ ์†Œ๋น„ํ•œ๋‹ค๊ณ  ๋ณธ๋‹ค. **์—”ํŠธ๋กœํ”ผ ์—ญํ•™**: dH/dt = Production - Consumption where Consumption = ฯ„ ร— (learning_rate) **Simulation-Based Calibration์˜ ์—ญํ• **: - Prior predictive: ๊ฐ€๋Šฅํ•œ ๋ฏธ๋ž˜ ์ƒ์„ฑ - Calibration: ํ˜„์‹ค๊ณผ์˜ ์ •ํ•ฉ์„ฑ ๊ฒ€์ฆ - Posterior predictive: ์—…๋ฐ์ดํŠธ๋œ ๋ฏธ๋ž˜ ์ด๋Š” H. L. Lee and Schmidt (2017)์˜ "supplier engagement in innovation"์„ ํ™•๋ฅ ์ ์œผ๋กœ ์ •ํ˜•ํ™”ํ•œ๋‹ค. ### 2.5.3 B (Behavioral/Cognitive): Rational Meaning Construction ์ธ์ง€๊ณผํ•™์€ ์ดํ•ด๊ด€๊ณ„์ž๊ฐ€ ์•ฝ์†์„ ์–ด๋–ป๊ฒŒ ํ•ด์„ํ•˜๋Š”์ง€ ์„ค๋ช…ํ•œ๋‹ค. **Pragmatic ํ•ด์„**: P(interpretation|promise, context) โˆ P(promise|interpretation, context) ร— P(interpretation|context) **์ง‘๋‹จ ์‚ฌ์ „๋ถ„ํฌ (Group Prior)**: P(ฮธ|group) = โˆซ P(ฮธ|individual) ร— P(individual|group) d(individual) ์ด๋Š” Hora and Dutta (2013)์˜ "investment in relationships"๊ฐ€ ์™œ ์ค‘์š”ํ•œ์ง€ ์„ค๋ช…ํ•œ๋‹ค. ### 2.5.4 E (Evolution/Adaptation): ์ „์šฉ๊ณผ ๋ฐœํ˜„ ์ง„ํ™”๋ก ์€ ์˜ˆ์ƒ์น˜ ๋ชปํ•œ ๊ธฐ๋Šฅ์˜ ์ถœํ˜„์„ ์„ค๋ช…ํ•œ๋‹ค. **์ „์šฉ (Exaptation)**: ์›๋ž˜ ๊ธฐ๋Šฅ fโ‚์„ ์œ„ํ•œ ํŠน์„ฑ์ด ์ƒˆ๋กœ์šด ๊ธฐ๋Šฅ fโ‚‚๋กœ ์žฌ์‚ฌ์šฉ P(exaptation) = ฯƒยฒ ร— Market_dynamism ร— Combinatorial_potential **๋ฐœํ˜„ (Emergence)**: Bhargava et al. (2013)์˜ "portfolio expansion"์„ ์ง„ํ™”๋ก ์ ์œผ๋กœ: Portfolio_value = โˆ‘ Direct_value + โˆ‘โˆ‘ Synergy_value ร— ฯƒยฒแตข ร— ฯƒยฒโฑผ ## 2.6 ๊ฒฝํ—˜์  ํ•จ์˜์™€ ์ธก์ • ํ”„๋กœํ† ์ฝœ ### 2.6.1 ์˜ˆ์ธก 1: ฯ„์™€ ํ”ผ๋ฒ— ์„ฑ๊ณต๋ฅ  **๊ฐ€์„ค**: P(successful_pivot|ฯ„ > 50) < 0.2 ร— P(successful_pivot|ฯ„ < 10) **์ธก์ • ํ”„๋กœํ† ์ฝœ**: 1. ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ๋ฅผ ํ†ตํ•œ ฯ„ ์ถ”์ถœ: ```python def extract_tau(pitch_text): precision_markers = { 'low': ['roughly', 'approximately', 'around', 'about'], 'medium': ['targeting', 'aiming for', 'expecting'], 'high': ['exactly', 'precisely', 'guaranteed', 'definitely'] } # Count precision markers marker_counts = count_markers(pitch_text, precision_markers) # Extract numerical specificity number_precision = analyze_numerical_claims(pitch_text) # Combine into tau estimate tau = combine_linguistic_numerical(marker_counts, number_precision) return tau ``` 2. ํ”ผ๋ฒ— ์„ฑ๊ณต ์ธก์ •: - ์ œํ’ˆ ๋ฒกํ„ฐ ๋ณ€ํ™”: cosine_similarity(product_t0, product_t1) < 0.5 - ์ƒ์กด ์กฐ๊ฑด: revenue_t2 > 0 ๋˜๋Š” additional_funding > 0 ### 2.6.2 ์˜ˆ์ธก 2: ๋ณต์žก๋„์™€ ์ตœ์  ์•ผ๋ง **๊ฐ€์„ค**: ฮผ* = 1/(n+1) + ฮต where |ฮต| < 0.05 **๋ณต์žก๋„ ์ธก์ •**: ```python def measure_complexity(venture): n_components = count_critical_components(BOM) n_regulatory = count_approval_stages() n_partners = count_essential_partnerships() n_processes = count_manufacturing_steps() n = weighted_sum([n_components, n_regulatory, n_partners, n_processes], weights=[0.3, 0.3, 0.2, 0.2]) return n ``` ### 2.6.3 ์˜ˆ์ธก 3: ๊ทน๋‹จ์  ์ •๋ฐ€๋„์™€ ํ—ˆ์œ„ํ‘œํ˜„ **๊ฐ€์„ค**: Odds_ratio = P(fraud|ฯ„>80)/P(fraud|ฯ„<20) > 10 **์‚ฌ๊ธฐ ์ง€ํ‘œ**: - SEC ์กฐ์‚ฌ ๋˜๋Š” ๊ธฐ์†Œ - ๋Œ€๊ทœ๋ชจ ํˆฌ์ž์ž ์†Œ์†ก - ๊ฐ์‚ฌ์ธ ์‚ฌ์ž„ - ์žฌ๋ฌด์ œํ‘œ ์žฌ์ž‘์„ฑ **์ •๋ฐ€๋„ ์ธก์ •**: ```python def measure_promise_precision(documents): claims = extract_quantitative_claims(documents) precision_score = 0 for claim in claims: if has_exact_number(claim): precision_score += 2 if has_narrow_range(claim): precision_score += 1 if has_specific_timeline(claim): precision_score += 1.5 tau = map_score_to_tau(precision_score) return tau ``` ### 2.6.4 ์˜ˆ์ธก 4: ๋ถ„์‚ฐ ๋ณด์กด๊ณผ ์ „์šฉ ๊ฐ€์น˜ **๊ฐ€์„ค**: Exaptation_value โˆ ฯƒยฒ^ฮฑ where ฮฑ โˆˆ [1.5, 2.5] **์ „์šฉ ์ธก์ •**: ```python def measure_exaptation(venture): # Original vs current market market_distance = 1 - cosine_similarity(market_t0, market_current) # Revenue from unplanned applications unplanned_revenue_ratio = revenue_unplanned / revenue_total # Patent citations from other fields cross_field_citations = count_citations_outside_original_class() exaptation_score = combine_metrics(market_distance, unplanned_revenue_ratio, cross_field_citations) return exaptation_score ``` ## 2.7 ์ด๋ก ์  ๊ธฐ์—ฌ์˜ ์ข…ํ•ฉ ๋ณธ ์ด๋ก ์  ๋ฐฐ๊ฒฝ์€ ์„ธ ๊ฐ€์ง€ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋ฅผ ํ†ตํ•ด ์ฐฝ์—… ์šด์˜ ๊ด€๋ฆฌ ๋ฌธํ—Œ์„ ํ™•์žฅํ•œ๋‹ค: **์ฒซ์งธ**, McDougall et al. (1992)์ด ์ œ๊ธฐํ•œ "new ventures need to be examined separately"๋ผ๋Š” ์š”๊ตฌ์— ๋Œ€ํ•ด, ์šฐ๋ฆฌ๋Š” ์•ฝ์† ๊ตฌ์กฐ(ฮผ, ฯ„)๋ผ๋Š” ์ƒˆ๋กœ์šด ๋ถ„์„ ๋‹จ์œ„๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์ด๋Š” Joglekar and Lรฉvesque (2013)์˜ 10๊ฐœ OM ๋„๋ฉ”์ธ์„ ๋‹จ์ผ ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ํ†ตํ•ฉํ•œ๋‹ค. **๋‘˜์งธ**, Utterback and Abernathy (1975)์˜ ๋‹จ๊ณ„ ๋ชจ๋ธ์„ ์—ฐ์†์  ฯ„ ์ŠคํŽ™ํŠธ๋Ÿผ์œผ๋กœ ํ™•์žฅํ•˜์—ฌ, ์ฐฝ์—…๊ฐ€๊ฐ€ ํƒ์ƒ‰๊ณผ ํ™œ์šฉ์„ ์ „๋žต์ ์œผ๋กœ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ์ด๋Š” Mueller et al. (2012)์˜ "fragmented activities"๊ฐ€ ์–ด๋–ป๊ฒŒ "coherent strategy"๋กœ ์ „ํ™˜๋˜๋Š”์ง€ ์„ค๋ช…ํ•œ๋‹ค. **์…‹์งธ**, Jiang and Liu (2019)์˜ "entrepreneurial optimism"์ด ์™œ ๋•Œ๋กœ๋Š” ์„ฑ๊ณตํ•˜๊ณ  ๋•Œ๋กœ๋Š” ์‹คํŒจํ•˜๋Š”์ง€๋ฅผ, ฯ„์˜ ๊ฒฝ๊ณ„ ์กฐ๊ฑด์„ ํ†ตํ•ด ์„ค๋ช…ํ•œ๋‹ค. ๋‚ฎ์€ ฯ„์˜ ๋‚™๊ด€์ฃผ์˜๋Š” ์œ ์—ฐ์„ฑ์„ ๋ณด์กดํ•˜์—ฌ ์„ฑ๊ณตํ•˜์ง€๋งŒ, ๋†’์€ ฯ„์˜ ๋‚™๊ด€์ฃผ์˜๋Š” ์ˆ˜ํ•™์ ์œผ๋กœ ์‹คํŒจ๊ฐ€ ๋ถˆ๊ฐ€ํ”ผํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ํ†ตํ•ฉ์„ ํ†ตํ•ด, ์šฐ๋ฆฌ๋Š” Fine et al. (2022)์ด ์š”๊ตฌํ•œ "operations for entrepreneurs"๋ฅผ ์œ„ํ•œ ์ด๋ก ์  ๊ธฐ์ดˆ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ์•ฝ์† ๊ตฌ์กฐ๋Š” ๋‹จ์ˆœํ•œ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜์ด ์•„๋‹ˆ๋ผ, ๋ฒค์ฒ˜์˜ ์šด๋ช…์„ ๊ฒฐ์ •ํ•˜๋Š” ๊ตฌ์กฐ์  ์ œ์•ฝ์ด๋ฉฐ, ์ด๋ฅผ ๊ด€๋ฆฌํ•˜๋Š” ๊ฒƒ์ด ์ฐฝ์—… ์šด์˜ ๊ด€๋ฆฌ์˜ ํ•ต์‹ฌ์ด๋‹ค.