# ์ž๋ณธ๊ณผ ๋ถ„ํ™”์˜ ์ดํ•ด: ์ฐฝ์—…์ž๊ฐ€ ์ •๋ณด์™€ ๋ถˆํ™•์‹ค์„ฑ์„ ์„ ํƒํ•ด์•ผํ•˜๋Š” ์ด์œ  Venture Capital, Difference, [[Diffรฉrance]] ์ฐฝ์—…๊ฐ€์  ์•ฝ์† ๊ตฌ์กฐ: ์ •๋ฐ€๋„๊ฐ€ ํ˜์‹ ์„ ๊ฐ€๋‘๊ณ  ์ „๋žต์  ํ—ˆ์œ„ํ‘œํ˜„์„ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ถˆ๊ฐ€ํ”ผํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ• Andrew'sย [bayesian cringe](https://0599faed.streaklinks.com/CkXn8SuvL8MYzZrwSQtSvU0t/https%3A%2F%2Fstatmodeling.stat.columbia.edu%2F2021%2F09%2F15%2Fthe-bayesian-cringe%2F)ย "stability is a goal in itself" affected my motto, ergodic life. -ย ย [The entrepreneur community's reaction](https://0599faed.streaklinks.com/CkXn8SqHBxrRMcc14gHPRIc1/https%3A%2F%2Fnews.ycombinator.com%2Fitem%3Fid%3D39832071)ย to bayesian cringe idea. I'm trying to understand why sk11001 found this nonspecific as opposed to uoaei and me. **-------** I'm strengthening introduction around three aha contributions: **!***1. financing entrepreneur's experiment is NOT scientific measurement, but on constructing shared meaning** *2. entrepreneur's**ย **success**ย **should NOT be evaluated on selling, but on how well the probability distribution of promise sold & delivered mathes that withย  promise prior** ***3. uncertainty doesn't always increase entropy. entrepreneurย canย sponge in order from futureย environmentย better by making distributional promises** **-------** **!*1 casts an entrepreneur more as an agent acculturating collaboration, instead of a scientific agentย experimenting with nature. This departs from the centralย entrepreneurial finance paper attached [1], where we have a double principal-agent problem: first between investorย and entrepreneur, second between entrepreneur and one's statistical tool.ย ย  Culture is not natural, which reminds me of the Hawthorne experiment andย [Heisenberg effectย in business](https://0599faed.streaklinks.com/CkXn8Su__3LzTmB6RAFXh_qk/https%3A%2F%2Fpapers.ssrn.com%2Fsol3%2Fpapers.cfm%3Fabstract_id%3D3581255)ย [2]. Jay Barney, known for resource-based view and author of the Heisenberg paper, HIGH skepticism about current empirical research direction where econometric tools likeย _IV and diff-diff_ย create rigor fantasy. When I shared Jeff's paper attached explaining how hierarchical Bayesian models captures essential heterogeneity, Jay appreciated it. Two takeaways from the paper: 1. IVโ€™s exclusion restriction cannot hold if we assume rational agents who use full private information 2. using hierarchical bayesian, Jeff and Jay refuted previous literature that diversification increases valuation. they showed both diversifying/non-diversifying firms benefited from their own action (Mackey et al., 2017 [3]) # "fake itย till you make it" with point vs distributional promise ๐ŸŽ๏ธTesla's Fake itย  โ†’ Learn it โ†’ Make it : "over 200 miles" โ†’ learn the quality of one's sellability and deliverabilityย  โ†’ reach 265 miles ๐Ÿš™ Better Place's Fake itย  โ†’ Believe it โ†’ Break it : "infinite miles, 3min change" โ†’ย self-hypnosisย โ†’ Bankrupt ---- [[09-06|25-09-05]] ## 1. ์„œ๋ก  ## 1.1 ๋ฌธ์ œ ์ œ๊ธฐ: ๋ถˆํ™•์‹ค์„ฑ์€ ์ œ์•ฝ์ธ๊ฐ€, ์„ ํƒ์ธ๊ฐ€? ๋งค๋…„ ๋ฒค์ฒ˜์บํ”ผํƒˆ์€ ์•„์ง ๊ฒ€์ฆํ•  ์ˆ˜ ์—†๋Š” ์ฐฝ์—…๊ฐ€์  ์•ฝ์†์— ๊ธฐ๋ฐ˜ํ•ด ์ „ ์„ธ๊ณ„์ ์œผ๋กœ 3,000์–ต ๋‹ฌ๋Ÿฌ ์ด์ƒ์„ ํˆฌ์žํ•œ๋‹ค. ์‹คํŒจ์œจ์€ 90%๋ฅผ ๋„˜์œผ๋ฉฐ, ์‚ฌํ›„ ๋ถ„์„์€ ๋Œ€๊ฐœ ์‹คํ–‰ ๋ฌธ์ œ, ์‹œ์žฅ ํƒ€์ด๋ฐ, ์ฐฝ์—…์ž ๋ฌด๋Šฅ์„ ์‹คํŒจ ์›์ธ์œผ๋กœ ์ง€๋ชฉํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋” ๊ทผ๋ณธ์ ์ธ ์›์ธ์„ ์ œ์‹œํ•œ๋‹ค: **์‹คํŒจํ•œ ๋ฒค์ฒ˜๋Š” ๋ถˆํ™•์‹ค์„ฑ์„ ๊ด€๋ฆฌํ•ด์•ผ ํ•  ์ œ์•ฝ์œผ๋กœ ๋ณด์•˜๊ณ , ์„ฑ๊ณตํ•œ ๋ฒค์ฒ˜๋Š” ๋ถˆํ™•์‹ค์„ฑ์„ ์„ค๊ณ„ํ•  ์ˆ˜ ์žˆ๋Š” ์„ ํƒ์œผ๋กœ ๋ณด์•˜๋‹ค.** ์ด๋Š” ๊ธฐ์กด ๋ฌธํ—Œ์˜ ํ•ต์‹ฌ ๊ฐ€์ •์„ ๋’ค์ง‘๋Š”๋‹ค. Phan๊ณผ Chambers(2018)๋Š” "managing uncertainty"๋ฅผ, Gans(2015)๋Š” "optimizing under unknown unknowns"๋ฅผ ๋…ผํ•œ๋‹ค. ๋‘ ์ ‘๊ทผ ๋ชจ๋‘ ๋ถˆํ™•์‹ค์„ฑ์„ ์™ธ์ƒ์  ์ œ์•ฝ์œผ๋กœ ๋ณธ๋‹คโ€”์ตœ์†Œํ™”ํ•˜๊ฑฐ๋‚˜ ์ตœ์ ํ™”ํ•ด์•ผ ํ•  ๋ฌธ์ œ๋กœ. ์šฐ๋ฆฌ๋Š” ์ด ์ œ์•ฝ์„ ์™„ํ™”ํ•œ๋‹ค: **๋ถˆํ™•์‹ค์„ฑ, ๊ตฌ์ฒด์ ์œผ๋กœ ์•ฝ์†์˜ ์ •๋ฐ€๋„ ฯ„๋Š” ์ฐฝ์—…๊ฐ€๊ฐ€ ์„ ํƒํ•˜๋Š” ์„ค๊ณ„ ๋งค๊ฐœ๋ณ€์ˆ˜๋‹ค.** 2010๋…„์˜ ๋‘ ์ „๊ธฐ์ฐจ ๋ฒค์ฒ˜๊ฐ€ ์ด ์ฐจ์ด๋ฅผ ๊ทน๋ช…ํžˆ ๋ณด์—ฌ์ค€๋‹ค. Tesla๋Š” "๋Œ€๋žต 200๋งˆ์ผ"์˜ ์ฃผํ–‰๊ฑฐ๋ฆฌ๋ฅผ ์•ฝ์†ํ–ˆ๋‹ค. Better Place๋Š” "์ •ํ™•ํžˆ 3๋ถ„"์˜ ๋ฐฐํ„ฐ๋ฆฌ ๊ต์ฒด๋ฅผ ๋ณด์žฅํ–ˆ๋‹ค. 5๋…„ ํ›„, Tesla๋Š” ์ฒ˜์Œ ์ƒ์ƒํ•˜์ง€ ๋ชปํ•œ ์‹œ์žฅโ€”์—๋„ˆ์ง€ ์ €์žฅ, ํƒœ์–‘๊ด‘, ๊ทธ๋ฆฌ๋“œ ์„œ๋น„์Šคโ€”์œผ๋กœ ์ง„ํ™”ํ–ˆ๋‹ค. Better Place๋Š” 8์–ต 5์ฒœ๋งŒ ๋‹ฌ๋Ÿฌ๋ฅผ ํƒœ์šฐ๊ณ  ํŒŒ์‚ฐํ–ˆ๋‹ค. ๋‘ ํšŒ์‚ฌ ๋ชจ๋‘ ๋›ฐ์–ด๋‚œ ์ฐฝ์—…์ž์™€ ํ’๋ถ€ํ•œ ์ž์›์„ ๊ฐ€์กŒ๋‹ค. ๊ฒฐ์ •์  ์ฐจ์ด๋Š” **Tesla๋Š” "๋Œ€๋žต"์ด ์ „๋žต์  ์„ ํƒ์ž„์„ ์•Œ์•˜๊ณ , Better Place๋Š” "์ •ํ™•ํžˆ"๊ฐ€ ๊ธฐ์ˆ ์  ํ•„์—ฐ์ด๋ผ ๋ฏฟ์—ˆ๋‹ค๋Š” ๊ฒƒ์ด๋‹ค.** Tesla์—๊ฒŒ ๋‚ฎ์€ ์ •๋ฐ€๋„(ฯ„โ‰ˆ5)๋Š” ๋ฏธ๋ž˜ ์ ์‘์„ ์œ„ํ•ด ์˜๋„์ ์œผ๋กœ ๋ณด์กดํ•œ ์ž์›์ด์—ˆ๋‹ค. Better Place์—๊ฒŒ ๋†’์€ ์ •๋ฐ€๋„(ฯ„โ‰ˆ60)๋Š” ๊ธฐ์ˆ ์  ์šฐ์ˆ˜์„ฑ์˜ ์ฆ๊ฑฐ์˜€๋‹ค. ์ด ์ฐจ์ด๋Š” ์šฐ์—ฐ์ด ์•„๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์•ฝ์†์„ Beta(ฮผฯ„, (1-ฮผ)ฯ„) ๋ถ„ํฌ๋กœ ๋ชจ๋ธ๋งํ•˜์—ฌ, ฯ„๊ฐ€ ๋‹จ์ˆœํ•œ ์˜์‚ฌ์†Œํ†ต ์„ ํƒ์ด ์•„๋‹˜์„ ๋ณด์—ฌ์ค€๋‹ค. **ฯ„๋Š” ๋ฒค์ฒ˜์˜ ํ•™์Šต ๋Šฅ๋ ฅ์„ ์ˆ˜ํ•™์ ์œผ๋กœ ๊ฒฐ์ •ํ•œ๋‹ค**: ๋ถ„์‚ฐ ฯƒยฒ = ฮผ(1-ฮผ)/(ฯ„+1)์ด 0.02 ์•„๋ž˜๋กœ ๋–จ์–ด์ง€๋ฉด, ๋ฒ ์ด์ง€์•ˆ ์—…๋ฐ์ดํŠธ๊ฐ€ ์‚ฌ์‹ค์ƒ ๋ถˆ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ฯ„ > ฮผ(1-ฮผ)/ฮต์ผ ๋•Œ, ์ฐฝ์—…๊ฐ€๋Š” ๋‘ ๊ฐ€์ง€ ์„ ํƒ๋งŒ ๊ฐ€๋Šฅํ•˜๋‹คโ€”๋ฒค์ฒ˜๋ฅผ ํฌ๊ธฐํ•˜๊ฑฐ๋‚˜, ์ง„์‹ค์„ ์™œ๊ณกํ•˜๊ฑฐ๋‚˜. --- ## 1.2 ํ•ต์‹ฌ ํ†ต์ฐฐ: ์„ ํƒ์œผ๋กœ์„œ์˜ ๋ถˆํ™•์‹ค์„ฑ ๋ณธ ๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๊ธฐ์—ฌ๋Š” ๋‹จ์ˆœํ•˜์ง€๋งŒ ๊ธ‰์ง„์ ์ด๋‹ค: **๋ถˆํ™•์‹ค์„ฑ์€ ์ œ๊ฑฐํ•  ๋ฌธ์ œ๊ฐ€ ์•„๋‹ˆ๋ผ ์„ค๊ณ„ํ•  ์ž์›์ด๋‹ค.** ์ด๋Š” ์„ธ ์ˆ˜์ค€์—์„œ ๊ธฐ์กด ์ด๋ก ์„ ์žฌ๊ตฌ์„ฑํ•œ๋‹ค: ### ์ด๋ก ์  ์ˆ˜์ค€: ์ œ์•ฝ ์™„ํ™” - **๊ธฐ์กด**: ๋ถˆํ™•์‹ค์„ฑ ํ•˜์—์„œ ์ตœ์ ํ™” (constrained optimization under uncertainty) - **์šฐ๋ฆฌ**: ๋ถˆํ™•์‹ค์„ฑ์„ ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ ์ตœ์ ํ™” (optimizing uncertainty as parameter) - **ํ•จ์˜**: March์˜ ํƒ์ƒ‰-ํ™œ์šฉ ๋”œ๋ ˆ๋งˆ๊ฐ€ ฯ„ ์„ ํƒ ๋ฌธ์ œ๋กœ ๋ณ€ํ™˜๋จ ### ์‹ค์ฆ์  ์ˆ˜์ค€: ์„ฑ๊ณต๊ณผ ์‹คํŒจ์˜ ์žฌํ•ด์„ - **Theranos** (ฯ„โ‰ˆ95): "์ •ํ™•ํžˆ 4์‹œ๊ฐ„, 200๊ฐœ ๊ฒ€์‚ฌ"๋Š” ๊ธฐ์ˆ ์  ์•ฝ์†์ด ์•„๋‹ˆ๋ผ ๋ฌด์ง€์˜ ์„ ํƒ - **Nikola** (ฯ„โ‰ˆ100): "์ •ํ™•ํžˆ 1,000๋งˆ์ผ"์€ ๊ณผ๋„ํ•œ ์ž์‹ ๊ฐ์ด ์•„๋‹ˆ๋ผ ฯ„๋ฅผ ์„ ํƒ์œผ๋กœ ์ธ์‹ํ•˜์ง€ ๋ชปํ•œ ๊ฒฐ๊ณผ - **Tesla** (ฯ„โ‰ˆ5โ†’30): ๋‹จ๊ณ„์  ฯ„ ์ฆ๊ฐ€๋Š” ํ–‰์šด์ด ์•„๋‹ˆ๋ผ ์˜๋„์  ์„ค๊ณ„ ### ์‹ค๋ฌด์  ์ˆ˜์ค€: ํˆฌ์ž ๋‹จ๊ณ„๋ณ„ ฯ„ ๊ด€๋ฆฌ ``` Pre-seed: ฯ„ < 5 ("๋ฌด์–ธ๊ฐ€ ํ˜์‹ ์ ์ธ") Seed: ฯ„ โ‰ˆ 10 ("์˜๋ฃŒ AI") Series A: ฯ„ โ‰ˆ 30 ("์ง„๋‹จ ์ •ํ™•๋„ 30% ๊ฐœ์„ ") Series B: ฯ„ โ‰ˆ 50 ("FDA ์Šน์ธ ํ›„ 3๊ฐœ ๋ณ‘์›") ``` ๊ฐ ๋‹จ๊ณ„๋Š” ฯ„๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค์ง€๋งŒ, **์ด๊ฒƒ์ด ์„ ํƒ์ž„์„ ์•„๋Š” ์ฐฝ์—…๊ฐ€๋งŒ์ด ์†๋„๋ฅผ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋‹ค.** --- ## 1.3 ์•ฝ์†์˜ ์•ฝ์†: ์„ ํƒ์„ ๋ชจ๋ฅผ ๋•Œ์˜ ํ•จ์ • ฯ„๋ฅผ ์„ ํƒ์œผ๋กœ ์ธ์‹ํ•˜์ง€ ๋ชปํ•˜๋ฉด "์•ฝ์†์˜ ์•ฝ์†"์ด๋ผ๋Š” ํ•จ์ •์— ๋น ์ง„๋‹ค. Lauren Berlant์˜ "Exchange Value" ํ˜•์ œ๋“ค์ฒ˜๋Ÿผ, ์ฐฝ์—…๊ฐ€๋Š” ์ดˆ๊ธฐ ์•ฝ์†(1์ฐจ)์ด ํˆฌ์ž ์กฐ๊ฑด(2์ฐจ)์œผ๋กœ, ๋‹ค์‹œ IPO ๊ธฐ๋Œ€(3์ฐจ)๋กœ ์ฆํญ๋˜๋Š” ๊ฒƒ์„ ๋ง‰์„ ์ˆ˜ ์—†๊ฒŒ ๋œ๋‹ค. Better Place๊ฐ€ ์ •ํ™•ํžˆ ์ด ํ•จ์ •์— ๋น ์กŒ๋‹ค: 1. **๊ธฐ์ˆ ์  ์•ฝ์†** (2007): "3๋ถ„ ๋ฐฐํ„ฐ๋ฆฌ ๊ต์ฒด"โ€”๊ธฐ์ˆ ์  ์šฐ์ˆ˜์„ฑ์œผ๋กœ ์ธ์‹ 2. **ํˆฌ์ž ์•ฝ์†** (2008): 10์–ต ๋‹ฌ๋Ÿฌ ์กฐ๋‹ฌโ€”"์„ธ๊ณ„ ์ตœ์ดˆ ์กฐ ๋‹ฌ๋Ÿฌ ๊ธฐ์—…" 3. **์‹œ์žฅ ์•ฝ์†** (2010): "2015๋…„๊นŒ์ง€ ์ด์Šค๋ผ์—˜ ํœ˜๋ฐœ์œ  ์ฐจ ํŒ๋งค ์ข…๋ฃŒ" ๊ฐ ๋‹จ๊ณ„์—์„œ Shai Agassi๋Š” ์ •๋ฐ€๋„ ์ฆ๊ฐ€๊ฐ€ ํ•„์—ฐ์ด๋ผ ๋ฏฟ์—ˆ๋‹ค. ์‹ค์ œ๋กœ๋Š” ๋งค๋ฒˆ ์„ ํƒ์˜ ์ˆœ๊ฐ„์ด์—ˆ๋‹ค. ์ด ๋ฌด์ง€๊ฐ€ "Shai math"โ€”์ž๊ธฐ๊ธฐ๋งŒ์˜ ์ˆ˜ํ•™โ€”์„ ๋งŒ๋“ค์—ˆ๊ณ , ๊ถ๊ทน์ ์œผ๋กœ ๋ถ•๊ดด๋กœ ์ด์–ด์กŒ๋‹ค. ๋ฐ˜๋ฉด Tesla์˜ Elon Musk๋Š” ๊ฐ ์•ฝ์†์ด ์„ ํƒ์ž„์„ ๋ณด์—ฌ์ค€๋‹ค: - Model S: "๋Œ€๋žต 200๋งˆ์ผ" โ†’ ์‹ค์ œ 265๋งˆ์ผ - Model 3: "3๋งŒ 5์ฒœ ๋‹ฌ๋Ÿฌ ์ •๋„" โ†’ ์ƒ์‚ฐ ๊ทœ๋ชจ์— ๋”ฐ๋ผ ์กฐ์ • - ์ž์œจ์ฃผํ–‰: "๋ ˆ๋ฒจ" ์‹œ์Šคํ…œ์œผ๋กœ ๋‹จ๊ณ„์  ์ •๋ฐ€๋„ ์ฆ๊ฐ€ **์ฐจ์ด๋Š” ๋Šฅ๋ ฅ์ด ์•„๋‹ˆ๋ผ ์ธ์‹์ด๋‹ค.** ฯ„๊ฐ€ ์„ ํƒ์ž„์„ ์•„๋Š” ๊ฒƒ๊ณผ ๋ชจ๋ฅด๋Š” ๊ฒƒ์˜ ์ฐจ์ด๋‹ค. --- ## 1.4 ์ด๋ก ์  ๊ธฐ์—ฌ์™€ ๊ตฌ์กฐ ๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด ์ด๋ก ์˜ ์ œ์•ฝ์„ ์™„ํ™”ํ•˜์—ฌ ๋†€๋ผ์šด ํ†ต์ฐฐ์„ ์ œ๊ณตํ•œ๋‹ค: ### ๊ธฐ์—ฌ 1: ๋ถˆํ™•์‹ค์„ฑ์˜ ๋‚ด์ƒํ™” ๋ถˆํ™•์‹ค์„ฑ์„ ์™ธ์ƒ์  ์ œ์•ฝ์—์„œ ๋‚ด์ƒ์  ์„ ํƒ์œผ๋กœ ์ „ํ™˜. ์ด๋Š” Knightian uncertainty์™€ risk์˜ ๊ตฌ๋ถ„์„ ๋ฌด๋„ˆ๋œจ๋ฆฐ๋‹คโ€”๋‘˜ ๋‹ค ฯ„ ์„ ํƒ์˜ ๊ฒฐ๊ณผ๋‹ค. ### ๊ธฐ์—ฌ 2: ์‚ฌ๊ธฐ์˜ ๊ตฌ์กฐ์  ์ด๋ก  ฯ„ > ฮผ(1-ฮผ)/ฮต์ผ ๋•Œ ์ •์งํ•œ ์—…๋ฐ์ดํŠธ๊ฐ€ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ถˆ๊ฐ€๋Šฅํ•จ์„ ์ฆ๋ช…. ์‚ฌ๊ธฐ๋Š” ๋„๋•์  ์‹คํŒจ๊ฐ€ ์•„๋‹ˆ๋ผ ฯ„๋ฅผ ์„ ํƒ์œผ๋กœ ์ธ์‹ํ•˜์ง€ ๋ชปํ•œ ๊ตฌ์กฐ์  ๊ฒฐ๊ณผ๋‹ค. ### ๊ธฐ์—ฌ 3: ๋™์  ฯ„ ๊ด€๋ฆฌ ํ”„๋กœํ† ์ฝœ ํˆฌ์ž ๋‹จ๊ณ„๋ณ„ ์ตœ์  ฯ„ ๊ฒฝ๋กœ ๋„์ถœ. ์ฐฝ์—…๊ฐ€์™€ ํˆฌ์ž์ž๋ฅผ ์œ„ํ•œ ๊ณ„์‚ฐ ๊ฐ€๋Šฅํ•œ ๊ฐ€์ด๋“œ๋ผ์ธ ์ œ๊ณต. ### ๊ธฐ์—ฌ 4: Cruel Optimism์˜ ์ˆ˜ํ•™ํ™” Berlant์˜ ๋ฌธํ•™์  ๊ฐœ๋…์„ ์ˆ˜ํ•™์ ์œผ๋กœ ์ •์‹ํ™”. ์„ฑ๊ณต์„ ์œ„ํ•œ ์•ฝ์†(๋†’์€ ฯ„)์ด ์„ฑ๊ณต์„ ๋ถˆ๊ฐ€๋Šฅํ•˜๊ฒŒ ๋งŒ๋“œ๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๊ทœ๋ช…. ๋…ผ๋ฌธ ๊ตฌ์„ฑ: - 2์ ˆ: Beta ๋ถ„ํฌ ๋ชจ๋ธ๊ณผ ํ•™์Šต ๋ถˆ๊ฐ€๋Šฅ์„ฑ ์ •๋ฆฌ - 3์ ˆ: ๋น„๊ต์ •ํƒœโ€”ฯ„ ์„ ํƒ์ด ๋ฒค์ฒ˜ ๊ถค์ ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ - 4์ ˆ: ์‹ค์ฆ ๋ถ„์„โ€”Theranos, Nikola, Tesla์˜ ฯ„ ์ง„ํ™” - 5์ ˆ: ์‹ค๋ฌด ํ•จ์˜โ€”๋™์  ฯ„ ๊ด€๋ฆฌ ํ”„๋กœํ† ์ฝœ - 6์ ˆ: ๊ฒฐ๋ก โ€”๋ถˆํ™•์‹ค์„ฑ ์„ค๊ณ„์˜ ๋ฏธ๋ž˜ **์šฐ๋ฆฌ์˜ ๋ฉ”์‹œ์ง€๋Š” ๋‹จ์ˆœํ•˜๋‹ค: ๋ถˆํ™•์‹ค์„ฑ์„ ๋‘๋ ค์›Œํ•˜์ง€ ๋ง๊ณ  ์„ค๊ณ„ํ•˜๋ผ. ๊ทธ๊ฒƒ์€ ์ œ์•ฝ์ด ์•„๋‹ˆ๋ผ ์„ ํƒ์ด๋‹ค.**