Business Model Prior Calibration: A Theoretical Framework for Action-Oriented Belief Encoding Paradigmatic Innovation in Bayesian Decision Theory The proposed framework of "Business Model Prior Calibration" represents a fundamental reconceptualization of Bayesian inference in entrepreneurial contexts. By treating prior distributions as action-oriented encodings rather than epistemic states, this approach resolves the theoretical tension between optimization and belief formation while maintaining mathematical coherence." ## I. ๐Ÿ‘พ์„œ๋ก  | Module | Label | Content | Key Insight | | ----------- | ----- | ------------------------------------------------------------------------------------------- | --------------------------------- | | [[๐Ÿ‘พalert]] | ๐Ÿ‘พ0 | **๊ธฐ: ์ฐฝ์—…๊ฐ€์˜ ํ™˜๊ฒฝ์ธ์‹** ์ฐฝ์—…๊ฐ€๊ฐ€ ์ง๋ฉดํ•œ ํ™˜๊ฒฝ์˜ ๊ฒฝ์ œ์  ๊ตฌ์กฐ(V/C ๋น„์œจ)๊ฐ€ ์ตœ์ ์˜ ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ ์‚ฌ์ „๋ถ„ํฌ๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค๋Š” ์ƒˆ๋กœ์šด ๊ด€์  ์ œ์‹œ | ์ฐฝ์—…์€ gut feeling์ด ์•„๋‹Œ ํ™˜๊ฒฝ์— ๋Œ€ํ•œ ์ „๋žต์  ๋ฐ˜์‘ | | | ๐Ÿ‘พโ†’ | **์Šน: ์‹คํ—˜์  ๋ณธ์งˆ** Noubar Afeyan์˜ "ํ•„์—ฐ์  ๊ฒฐํ•จ" ๊ฐœ๋…์„ ํ™•์žฅํ•˜์—ฌ, ์ฐฝ์—…์˜ ์„ฑ๊ณต์ด ์ดˆ๊ธฐ ๋น„์ „์˜ ์ •ํ™•์„ฑ์ด ์•„๋‹Œ ์‹คํ—˜์„ ํ†ตํ•œ ๊ฐฑ์‹  ๋Šฅ๋ ฅ์— ์žˆ์Œ์„ ๊ฐ•์กฐ | ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ์€ ๊ณ ์ •๋œ ๊ณ„ํš์ด ์•„๋‹Œ ๋™์  ๊ฐ€์„ค | | | ๐Ÿ‘พโ† | **์ „: ์ „๋žต์  ๋ณ€์ˆ˜ํ™”** ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ ์‚ฌ์ „๋ถ„ํฌ๋ฅผ ๊ฐœ์ธ ์‹ ๋…์—์„œ ์‹ค์‹œ๊ฐ„ ๊ตฌ์„ฑ๋˜๋Š” '์ „๋žต์  ๋ณ€์ˆ˜'๋กœ ์žฌ๊ฐœ๋…ํ™”ํ•˜๋Š” ํŒจ๋Ÿฌ๋‹ค์ž„ ์ „ํ™˜ | ๋ถˆํ™•์‹ค์„ฑ ์ž์ฒด๊ฐ€ ์ „๋žต์  ์ž์›์œผ๋กœ ์ „ํ™˜ | | | ๐Ÿ‘พโ†’โ† | **๊ฒฐ: ์ตœ์ ํ™” ๋ฌธ์ œ** ์‚ฌ์ „๋ถ„ํฌ ์„ ํƒ์„ ์ฐฝ์—…๊ฐ€๊ฐ€ ์ œ์‹œํ•˜๋Š” ์‹คํ—˜์„ ์œ„ํ•œ ์ตœ์ ํ•ด๋กœ ์žฌ์ •์˜, ์ด๋ฅผ ํ†ตํ•ด ์ƒˆ๋กœ์šด ์ด๋ก ์  ํ”„๋ ˆ์ž„์›Œํฌ ์ œ์‹œ | ์ฐฝ์—…๊ฐ€์ •์‹ ์˜ ๊ณผํ•™ํ™”๋ฅผ ์œ„ํ•œ ์ด๋ก ์  ํ† ๋Œ€ ๊ตฌ์ถ• | ## II. ๐Ÿข๋ฌธํ—Œ ์—ฐ๊ตฌ ๋ฐ ์ด๋ก  ๊ฐœ๋ฐœ | Module | Label | Content | Key Insight | | ----------- | ----- | ------- | ----------- | | [[๐Ÿขcan]] | ๐Ÿข0 | **๊ธฐ: ์ „ํ†ต์  ๊ด€์ ์˜ ํ•œ๊ณ„** Savage(1954) ์ดํ›„ ์ฃผ๊ด€์  ํ™•๋ฅ ์„ ์™ธ์ƒ์ ์œผ๋กœ ๋ณด๋Š” ๋ฒ ์ด์ง€์•ˆ ์˜์‚ฌ๊ฒฐ์ •๋ก ์˜ ํ•œ๊ณ„ ๋ถ„์„ | ์‹ ๋…๊ณผ ํ–‰๋™์˜ ๋ถ„๋ฆฌ๋Š” ์ฐฝ์—… ํ˜„์‹ค๊ณผ ๊ดด๋ฆฌ | | | ๐Ÿขโ†’ | **์Šน: ํ†ตํ•ฉ์˜ ํ•„์š”์„ฑ** '์‚ฌ์ „๋ถ„ํฌ ์„ ํƒ์ด ๊ณง ์ด์ต ๊ทน๋Œ€ํ™” ๋ฌธ์ œ'๋ผ๋Š” ๋ช…์ œ๋ฅผ ํ†ตํ•ด ์ธ์‹๋ก ์  ๊ณผ์ •๊ณผ ๊ฒฝ์ œ์  ์ตœ์ ํ™”์˜ ํ†ตํ•ฉ ์ฃผ์žฅ | Prior selection IS profit maximization | | | ๐Ÿขโ† | **์ „: ํ˜„์‹ค์  ๊ฐ„๊ทน** ์ฐฝ์—…๊ฐ€๊ฐ€ ๋ถˆํ™•์‹ค์„ฑ์„ ์ „๋žต์ ์œผ๋กœ ํ™œ์šฉํ•˜์—ฌ ํˆฌ์ž์ž, ์‹œ์žฅ๊ณผ ์ƒํ˜ธ์ž‘์šฉํ•˜๋Š” ํ˜„์‹ค์„ ๊ธฐ์กด ์ด๋ก ์ด ํฌ์ฐฉ ๋ชปํ•จ | ๋ถˆํ™•์‹ค์„ฑ์˜ ์ „๋žต์  ํ™œ์šฉ์ด ์ฐฝ์—…์˜ ํ•ต์‹ฌ | | | ๐Ÿขโ†’โ† | **๊ฒฐ: ์ด๋ก ์  ํ†ตํ•ฉ** ์‹ ๋… ํ˜•์„ฑ๊ณผ ํ–‰๋™ ์ตœ์ ํ™” ์‚ฌ์ด์˜ ๊ฐ„๊ทน์„ ๋ฉ”์šฐ๊ธฐ ์œ„ํ•ด ์‚ฌ์ „๋ถ„ํฌ ์ž์ฒด๋ฅผ ์ตœ์ ํ™” ๋Œ€์ƒ์œผ๋กœ ํ†ตํ•ฉ | ์ƒˆ๋กœ์šด ์ฐฝ์—… ์˜์‚ฌ๊ฒฐ์ • ์ด๋ก ์˜ ํ•„์š”์„ฑ ํ™•๋ฆฝ | ## III. ๐Ÿ…๋ฐฉ๋ฒ•๋ก  | Module | Label | Content | Key Insight | | ----------- | ----- | ------- | ----------- | | [[๐Ÿ…gen]] | ๐Ÿ…0 | **๊ธฐ: ๋ฌธ์ œ ์žฌ๊ตฌ์„ฑ** ๋‹จ์ผ ํ–‰๋™(ฯ†) ์ตœ์ ํ™”์—์„œ Beta ๋ถ„ํฌ์˜ ํ˜•์ƒ ํŒŒ๋ผ๋ฏธํ„ฐ(a, b) ์„ ํƒ ๋ฌธ์ œ๋กœ ์˜์‚ฌ๊ฒฐ์ • ์žฌ๊ตฌ์„ฑ | ํŒŒ๋ผ๋ฏธํ„ฐ ๊ณต๊ฐ„์—์„œ์˜ ์ตœ์ ํ™”๋กœ ์ „ํ™˜ | | | ๐Ÿ…โ†’ | **์Šน: ์ˆ˜ํ•™์  ์ •์‹ํ™”** ํŒ๋งค(S) ๋ฐ ์ดํ–‰(D) ์„ฑ๊ณต ํ™•๋ฅ ์˜ ์ฃผ๋ณ€ ๊ฐ€๋Šฅ๋„๋ฅผ ์ด์šฉํ•œ ๊ธฐ๋Œ€ ๋น„์šฉ ํ•จ์ˆ˜ E[Cost] ์ •์˜ | ํ™•๋ฅ ์  ์ถ”๋ก ๊ณผ ๊ฒฝ์ œ์  ์ตœ์ ํ™”์˜ ๊ฒฐํ•ฉ | | | ๐Ÿ…โ† | **์ „: ๊ฒฐ์ •๋ก ์  ํ•ด** V/C ๋น„์œจ์˜ ๊ฒฐ์ •๋ก ์  ํ•จ์ˆ˜๋กœ ์ตœ์  ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ๋„์ถœ, ๋†’์€ V/C๋Š” ๊ณต๊ฒฉ์  ์‚ฌ์ „๋ถ„ํฌ(๋†’์€ a*/b*)๋ฅผ ์œ ๋„ | ํ™˜๊ฒฝ์ด ์ „๋žต์„ ๊ฒฐ์ •ํ•˜๋Š” ๋ฉ”์ปค๋‹ˆ์ฆ˜ ๊ทœ๋ช… | | | ๐Ÿ…โ†’โ† | **๊ฒฐ: ์ •๋Ÿ‰์  ํ”„๋ ˆ์ž„์›Œํฌ** ์ฐฝ์—…๊ฐ€์˜ ์‚ฌ์ „๋ถ„ํฌ ์„ค๊ณ„๊ฐ€ ์ง๊ด€์ด ์•„๋‹Œ ํ™˜๊ฒฝ์˜ ๊ฒฝ์ œ์  ์‹ ํ˜ธ์— ๋Œ€ํ•œ ์ •๋Ÿ‰์  ๋ฐ˜์‘์ž„์„ ์ฆ๋ช… | ์ฐฝ์—… ์˜์‚ฌ๊ฒฐ์ •์˜ ๊ณผํ•™์  ๊ธฐ๋ฐ˜ ํ™•๋ฆฝ | **Bayesian Operations for Entrepreneurs: Optimizing Target Priors Under Economic Constraints** This paper develops a novel theoretical framework for entrepreneurial decision-making by reconceptualizing prior belief formation as an optimization problem. While traditional Bayesian decision theory treats subjective probabilities as exogenous inputs, we demonstrate that entrepreneurs strategically construct their priors for promise level (target) based on environmental economic structures, specifically the value-to-cost (V/C) ratio. Using Beta distributions with hyper parameters (a, b) as decision variables, we derive closed-form solutions showing that optimal hyperparameters are deterministic functions of the V/C ratio. Our analysis reveals that higher value-to-cost environments induce more aggressive priors (higher mean), providing a mechanistic explanation for how economic signals shape entrepreneurial beliefs. This framework bridges the gap between epistemological processes and economic optimization, offering a quantitative foundation for understanding how entrepreneurs navigate uncertainty. The model contributes to entrepreneurship theory by showing that successful venture creation depends not on initial vision accuracy but on the strategic alignment of belief structures with environmental parameters. "Fake it till you make it" ๋ชจ๋ธ๋ง 1. **Game**: "๋‚˜๋Š” ๋ถˆํ™•์‹คํ•œ ์„ธ๊ณ„์—์„œ promise level(ฯ†)์„ ์„ ํƒํ•ด์•ผ ํ•œ๋‹ค" 2. **Cost**: "๊ณผ๋„ํ•œ ์•ฝ์†์€ C์˜ ๋น„์šฉ, ์„ฑ๊ณต์  delivery๋Š” V์˜ ๊ฐ€์น˜" 3. **Probability**: "๋‚ด prior Beta(a,b)๊ฐ€ ์‹œ์žฅ์˜ ๋ฐ˜์‘์„ ๊ฒฐ์ •ํ•œ๋‹ค" 4. **Decision**: "V/C ๋น„์œจ์„ ๋ณด๊ณ  ์ตœ์ ์˜ a*, b*๋ฅผ calibrateํ•œ๋‹ค" 5. ์ด ํ”„๋ ˆ์ž„์›Œํฌ๋Š” ์ฐฝ์—…๊ฐ€๊ฐ€ ๋ถˆํ™•์‹ค์„ฑ์„ ์ „๋žต์  ์ž์›์œผ๋กœ ํ™œ์šฉํ•˜๋Š” ๊ณผ์ •์„ ์ˆ˜ํ•™์ ์œผ๋กœ ํฌ์ฐฉํ•ฉ๋‹ˆ๋‹ค. Tesla์ฒ˜๋Ÿผ ๋™์ ์œผ๋กœ prior๋ฅผ ์กฐ์ •ํ•˜๋ฉด ์„ฑ๊ณต, Nikola์ฒ˜๋Ÿผ ๊ฒฝ์ง๋˜๋ฉด ์‹คํŒจ. - **Fake it**: Beta(a,b)๋กœ ๋ถˆํ™•์‹ค์„ฑ์„ ์˜๋„์ ์œผ๋กœ ์„ค๊ณ„, **Make it**: V/C ํ™˜๊ฒฝ์— ๋”ฐ๋ผ a*, b* ๋™์  ์กฐ์ • - **ํ•ต์‹ฌ ํ†ต์ฐฐ**: ์„ฑ๊ณต์€ ์ดˆ๊ธฐ ๋น„์ „์˜ ์ •ํ™•์„ฑ์ด ์•„๋‹Œ belief calibration ๋Šฅ๋ ฅ ## I. ๐Ÿ‘พIntroduction Our framework posits that entrepreneurs optimally construct business model priors based on their environment's V/C ratio, treating uncertainty as a strategic resource rather than an obstacleโ€”building on Afeyan's insight that success stems from experimental updating, not initial vision accuracy. This transforms prior distributions from fixed personal beliefs into dynamically optimized variables, providing the first scientific foundation for how entrepreneurs strategically deploy uncertainty. To motivate this radical reconceptualization, should we focus on the Tesla/Nikola contrast (where identical bold claims about electric trucking led Musk to iterative success through experimental updating while Milton's rigid adherence to initial vision led to fraud), or use our original three cases spanning different V/C environments (Theranos/low V/C where Holmes's inability to update doomed her, WeWork/medium V/C where Neumann pivoted too late, and Musk's multiple ventures/high V/C where aggressive priors coupled with rapid experimentation created value), given that the multiple cases better demonstrate how V/C ratios mechanistically determine optimal prior selection? ## II. ๐ŸขLiterature Review & Theory Development Our framework challenges the fundamental assumption in Bayesian decision theory since Savage (1954) that treats subjective probabilities as exogenous inputs, arguing instead that entrepreneurs endogenously construct their priors as optimization variables to maximize profit. This reconceptualization reveals a critical gap: while traditional entrepreneurship literature acknowledges uncertainty, it fails to capture how entrepreneurs strategically weaponize uncertainty when engaging stakeholders, nor does it provide formal mechanisms linking belief formation to economic optimization. Given that our central propositionโ€”prior selection IS profit maximizationโ€”bridges epistemological and economic processes, which literature streams should we prioritize: (1) endogenous beliefs in decision theory and economics of information, (2) strategic uncertainty in entrepreneurship and venture capital signaling, or (3) optimization-based approaches to belief formation in operations research and machine learning? ## III. ๐Ÿ…Methodology |Module|Label|Content|Key Insight| |---|---|---|---| |[[๐Ÿ…gen]]|๐Ÿ…0|**Foundation: Problem Reframing** Decision-making shifts from optimizing single actions (ฯ†) to selecting Beta distribution shape parameters (a, b).|Optimization moves to parameter space| ||๐Ÿ…โ†’|**Development: Mathematical Formulation** Expected cost function E[Cost] defined through marginal likelihoods of sales (S) and delivery (D) success probabilities.|Probabilistic reasoning meets economic optimization| ||๐Ÿ…โ†|**Transformation: Deterministic Solution** Optimal hyperparameters emerge as deterministic functions of V/C ratio. High V/C drives aggressive priors (high a*/b*).|Environment determines strategy mechanistically| ||๐Ÿ…โ†’โ†|**Conclusion: Quantitative Framework** Prior design responds quantitatively to economic signals, not intuition.|Scientific basis for entrepreneurial decisions established| We formalize belief formation as a cost-minimization problem by assuming that the entrepreneur strategically selects a Beta prior distribution $\phi \sim \text{Beta}(a,b)$, where $\phi$ represents the latent promise level of the venture. The entrepreneur faces two possible outcomes: (i) the product is sold but not delivered, incurring a cost CC; and (ii) the product is both sold and successfully delivered, generating a value VV. The probabilities of these events are given by $\mathbb{P}(\text{Sold}, \neg \text{Delivered}) = \mathbb{E}[\phi(1 - \phi)]$ and $\mathbb{P}(\text{Sold}, \text{Delivered}) = \mathbb{E}[\phi^2]$, respectively. Substituting the Beta moments, the expected cost function becomes: $\mathbb{E}[\text{Cost}] = C \cdot \frac{a(a+1)}{(a + b)(a + b + 1)} - V \cdot \frac{ab}{(a + b)(a + b + 1)}$. This expression reveals that the entrepreneurโ€™s belief parameters (a, b) directly influence the cost structure via the joint distribution over selling and delivery probabilities. ### when only $\mu = \frac{a}{a+b}$ is variable (fixed $\tau = a + b$ ) To gain tractability, we fix the belief strength $\tau = a + b$, and focus on optimizing the prior mean $\mu = \frac{a}{a + b}$. Rewriting the cost function in terms of $\mu$, we find: $\mathbb{E}[\text{Cost}] = \frac{\tau(\tau - 1)}{(\tau + 1)\tau} \cdot \left[ C \cdot \mu(1 - \mu) - V \cdot \mu^2 \right].$ Minimizing this expression yields a closed-form optimal prior mean: $\mu^* = \frac{C}{C + V}.$ This implies that the entrepreneur should set a more optimistic prior belief (i.e., lower $\mu^*$) when the ventureโ€™s upside V dominates the potential failure cost C, and conversely adopt a more conservative belief when downside risk increases. The result transforms belief formation into an economically grounded optimization process, moving beyond philosophical subjectivity. ### when both $\mu = \frac{a}{a+b}, \tau = a + b$ are variables When both mean ฮผ = a/(a+b) and precision ฯ„ = a+b are optimization variables, the first-order conditions yield the optimal mean ฮผ* = V/(2C+V), indicating that entrepreneurs should calibrate their optimism proportionally to the value-to-cost ratioโ€”as value dominates costs, optimal beliefs approach maximum uncertainty (ฮผ* โ†’ 0.5). The optimal precision ฯ„* increases with the absolute difference |V-C|, as extreme cost structures create clearer strategic imperatives and reduce the value of maintaining belief flexibility. This dual optimization framework transforms entrepreneurial belief formation from philosophical speculation into precise economic calibration, where both the location and concentration of beliefs respond systematically to environmental parameters, with high-value ventures maintaining more diffuse priors to preserve learning opportunities while low-value ventures concentrate beliefs to minimize downside risk. ![[๐Ÿ“(๐Ÿ‘พ๐Ÿข๐Ÿ…๐Ÿ™) 2025-07-28-15.svg]] %%[[๐Ÿ“(๐Ÿ‘พ๐Ÿข๐Ÿ…๐Ÿ™) 2025-07-28-15|๐Ÿ–‹ Edit in Excalidraw]]%% AS-IS: $\underset{ฯ•}{min} E[Cost] = g(ฯ•)=Cโ‹…P(S=1,D=0โˆฃฯ•)โˆ’Vโ‹…P(S=1,D=1โˆฃฯ•)=Cฯ•2โˆ’Vฯ•(1โˆ’ฯ•)$ founder knows exactly what one should promise $\phi$ which implies founder isn't learning anything from the experiment which beats the purpose of experiment in most cases. TO-BE: $\underset{a,b}{min} E[Cost] = \int g(ฯ•) P(ฯ•) dฯ•$ where $ฯ• \sim Beta(a,b)$. founder minimize expected cost given one's prior of promise level. prior becomes decision variable, meaning founder choose what and how one should be uncertain about, rather than optimizing given exogenous uncertainty. main goal is to separate existing confusion on prior and belief. As such, we define prior as action-oriented encoding of belief and show how environment's cost parameter of action to sell then deliver promise affects the optimal prior on promise level. Using our framework, founder can calibrate prior distribution on their promise level before promising. This calibration is formulated as optimization problem where the founder minimize the expected cost using marginalized likelihood of sell or buy event which is environment's reaction to one's promise. This process of calibrating one's prior using simulated prior update helps founder become more flexible in their business modeling. this means the EVENT PROBABILITY P(S=1, D=0) is marginalized likelihood which is calculated by founder as weighted average of P(S=1, D=0|phi) using one's prior p(phi). likewise, from founder's perspective, event probability P(S=1, D=1) is marginalizing P(S=1, D=0|phi) over the weight p(phi) as founder will choose this promise level distribution to create uncertainty which its environment will react to. we derive P(S=1, D=0) = Beta(a+2, b)/Beta(a, b) and P(S=1, D=1)ย = Beta(a+1, b+1)/Beta(a, b). Note Beta(a, b+1) + Beta(a+2, b) + Beta(a+1, b+1) = Beta(a, b), proving the probability of three events adds up to one. ์šฐ๋ฆฌ๋Š” ์ด์ œ a=ฮผฯ„,b=(1โˆ’ฮผ)ฯ„a = \mu \tau, \quad b = (1 - \mu) \tau ์ด๋ฏ€๋กœ ์ตœ์ ํ™” ๋Œ€์ƒ์€ ๋‘ ๋ณ€์ˆ˜ (ฮผ,ฯ„)(\mu, \tau)๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. --- ### ๐Ÿ” ๋น„์šฉํ•จ์ˆ˜ ๋‹ค์‹œ ์“ฐ๊ธฐ ์•ž์„œ์˜ ๋‹จ์ˆœํ•œ ์˜ˆ (ํŒ๋งคํ™•๋ฅ  ฯ•, ์ „๋‹ฌํ™•๋ฅ  1โˆ’ฯ•)์—์„œ๋Š”: $E[Cost]=Cโ‹…ab(a+b)(a+b+1)โˆ’Vโ‹…a(a+1)(a+b)(a+b+1)\mathbb{E}[\text{Cost}] = C \cdot \frac{ab}{(a+b)(a+b+1)} - V \cdot \frac{a(a+1)}{(a+b)(a+b+1)} =1ฯ„(ฯ„+1)[Cฮผ(1โˆ’ฮผ)ฯ„2โˆ’Vฮผฯ„(ฮผฯ„+1)]= \frac{1}{\tau(\tau + 1)} \left[ C \mu(1 - \mu)\tau^2 - V \mu \tau (\mu \tau + 1) \right]$ ์ •๋ฆฌํ•˜๋ฉด: $f(ฮผ,ฯ„)=Cฮผ(1โˆ’ฮผ)ฯ„โˆ’Vฮผ(ฮผฯ„+1)$ --- ### ๐Ÿงฎ First-Order Conditions (FOC) (1) โˆ‚fโˆ‚ฮผ\frac{\partial f}{\partial \mu} โˆ‚fโˆ‚ฮผ=C(1โˆ’2ฮผ)ฯ„โˆ’V(2ฮผฯ„+1)\frac{\partial f}{\partial \mu} = C(1 - 2\mu)\tau - V(2\mu \tau + 1) same with --- ### (2) $\frac{\partial f}{\partial \tau} โˆ‚fโˆ‚ฯ„=Cฮผ(1โˆ’ฮผ)โˆ’Vฮผ2\frac{\partial f}{\partial \tau} = C \mu(1 - \mu) - V \mu^2 C(1 - 2\mu)\tau - V(2\mu \tau + 1) = 0 , Cฮผ(1โˆ’ฮผ)โˆ’Vฮผ2=0C \mu(1 - \mu) - V \mu^2 = 0 --- ### ๐Ÿ“Œ ๋‘ ๋ฒˆ์งธ ์‹์—์„œ ฮผโˆ—\mu^* ์œ ๋„ Cฮผ(1โˆ’ฮผ)=Vฮผ2โ‡’C(1โˆ’ฮผ)=Vฮผโ‡’C=ฮผ(C+V)โ‡’ฮผโˆ—=CC+VC \mu(1 - \mu) = V \mu^2 \Rightarrow C(1 - \mu) = V \mu \Rightarrow C = \mu(C + V) \Rightarrow \boxed{ \mu^* = \frac{C}{C + V} } > **๋†€๋ž๊ฒŒ๋„ ์ด ๊ฒฐ๊ณผ๋Š” ๋งค์šฐ ๊น”๋”ํ•˜๋ฉฐ ์ง๊ด€์ ์ž…๋‹ˆ๋‹ค.** > ๋น„์šฉ C๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ๋น„๊ด€์ ์ด ๋˜๊ณ , ๊ฐ€์น˜ V๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ๋‚™๊ด€์ ์œผ๋กœ ๋ฉ๋‹ˆ๋‹ค. --- ### ๐Ÿ“Œ ์ฒซ ๋ฒˆ์งธ ์‹์—์„œ ฯ„โˆ—\tau^* ์œ ๋„ ์ด์ œ ์œ„ ๊ฒฐ๊ณผ๋ฅผ ฮผโˆ—=CC+V\mu^* = \frac{C}{C+V}๋กœ ๋Œ€์ž…ํ•˜๋ฉด: C(1โˆ’2ฮผ)ฯ„=V(2ฮผฯ„+1)โ‡’C(1โˆ’2ฮผ)ฯ„โˆ’2Vฮผฯ„=Vโ‡’ฯ„[C(1โˆ’2ฮผ)โˆ’2Vฮผ]=Vโ‡’ฯ„โˆ—=VC(1โˆ’2ฮผ)โˆ’2VฮผC(1 - 2\mu)\tau = V(2\mu \tau + 1) \Rightarrow C(1 - 2\mu)\tau - 2V\mu \tau = V \Rightarrow \tau \left[C(1 - 2\mu) - 2V\mu\right] = V \Rightarrow \boxed{ \tau^* = \frac{V}{C(1 - 2\mu) - 2V\mu} } ์ด์ œ ฮผโˆ—=CC+V\mu^* = \frac{C}{C + V}๋ฅผ ๋„ฃ์œผ๋ฉด: ฯ„โˆ—=VC(1โˆ’2โ‹…CC+V)โˆ’2Vโ‹…CC+V=VCโ‹…(C+Vโˆ’2CC+V)โˆ’2VC/(C+V)\tau^* = \frac{V}{C \left(1 - 2\cdot \frac{C}{C+V}\right) - 2V \cdot \frac{C}{C+V}} = \frac{V}{C \cdot \left( \frac{C+V - 2C}{C+V} \right) - 2VC/(C+V)} ์ •๋ฆฌํ•˜๋ฉด: ฯ„โˆ—=V((Vโˆ’C)Cโˆ’2VCC+V)=V(C+V)C(Vโˆ’C)โˆ’2VC\tau^* = \frac{V}{ \left( \frac{(V - C)C - 2VC}{C + V} \right) } = \frac{V(C + V)}{C(V - C) - 2VC} ์ฆ‰, ฯ„โˆ—\tau^*๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋น„์„ ํ˜• ํ•จ์ˆ˜์ž…๋‹ˆ๋‹ค: ฯ„โˆ—=V(C+V)C(Vโˆ’C)โˆ’2VC(validย onlyย whenย denominatorย >ย 0)\boxed{ \tau^* = \frac{V(C + V)}{C(V - C) - 2VC} } \quad \text{(valid only when denominator > 0)} --- ## ๐Ÿงญ ํ•ด์„ ์š”์•ฝ |ํ•ญ๋ชฉ|๊ณ ์ • ฯ„\tau|๋ณ€์ˆ˜ ฯ„\tau| |---|---|---| |ฮผโˆ—\mu^*|๋ณต์žกํ•œ ๋ถ„์ˆ˜์‹|CC+V\frac{C}{C+V} (์ง๊ด€์ )| |ฯ„โˆ—\tau^*|๊ณ ์ • ์ƒ์ˆ˜|๊ฐ€์น˜-๋น„์šฉ ์ฐจ์ด์— ๋”ฐ๋ผ ์œ ๋™| |์˜๋ฏธ|ํ™•์‹  ์ˆ˜์ค€ ์ œํ•œ๋œ ์‹คํ—˜|ํ™•์‹  ์ˆ˜์ค€๊นŒ์ง€ ํฌํ•จํ•œ ์ „๋žต ์ตœ์ ํ™”| |ํ–‰๋™ ํ•ด์„|"์–ผ๋งˆ๋‚˜ ๋‚™๊ด€์ ์œผ๋กœ ๋งํ• ๊นŒ?"|"์–ผ๋งˆ๋‚˜ ๋‚™๊ด€์ ์œผ๋กœ, ์–ผ๋งˆ๋‚˜ ๊ฐ•ํ•˜๊ฒŒ ๋งํ• ๊นŒ?"| --- | **V (Value)** / **C (Cost)** | **Low C** (Low downside) | **High C** (High downside) | | ---------------------------- | ------------------------------------------------------------------------------------------------------ | ----------------------------------------------------------------------------------------------------------- | | **Low V** (Low upside) | **Cautious Neutral:** ฮผโˆ—\mu^* low (โ‰ˆ0.1โ€“0.2); pick **small ฯ„\tau** to remain flexible. | **Defensive:** ฮผโˆ—\mu^* very low (<0.1); **increase ฯ„\tau** to tighten prior and avoid risky promises. | | **High V** (High upside) | **Optimistic & Flexible:** ฮผโˆ—\mu^* near 0.4โ€“0.5; keep **moderate variance** (medium ฯ„\tau) to explore. | **Balanced Optimism:** ฮผโˆ—\mu^* around 0.3โ€“0.4; **raise ฯ„\tau** to reduce variance while staying optimistic. | ## IV. ๐Ÿ™์ ์šฉ ๋ฐ ํ† ๋ก  | Module | Label | Content | Key Insight | | ----------- | ----- | ---------------------------------------------------------------------------------- | --------------------- | | [[๐Ÿ™calib]] | ๐Ÿ™0 | **๊ธฐ: ์‚ฌ๋ก€ ์„ ์ •** ํ…Œ์Šฌ๋ผ์™€ ๋‹ˆ์ฝœ๋ผ์˜ ๋Œ€์กฐ์  ๋น„์ฆˆ๋‹ˆ์Šค ๋ชจ๋ธ ์ „๊ฐœ ๊ณผ์ •์„ ์ด๋ก ์  ํ”„๋ ˆ์ž„์›Œํฌ๋กœ ๋ถ„์„ | ์„ฑ๊ณต๊ณผ ์‹คํŒจ์˜ ๊ตฌ์กฐ์  ์ฐจ์ด ๊ทœ๋ช… | | | ๐Ÿ™โ†’ | **์Šน: ๋™์  ๋ณด์ •** ํ…Œ์Šฌ๋ผ๋Š” ๋‹ค์–‘ํ•œ ์ดํ•ด๊ด€๊ณ„์ž์—๊ฒŒ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๊ฐ€์„ค(์ƒ์ดํ•œ a, b ๊ฐ’)์„ ์ œ์‹œํ•˜๊ณ  ์‹œ์žฅ ๋ฐ˜์‘์— ๋”ฐ๋ผ ๋™์  ๋ณด์ • | ๋‹ค์ค‘ ์‚ฌ์ „๋ถ„ํฌ์˜ ์ „๋žต์  ํ™œ์šฉ | | | ๐Ÿ™โ† | **์ „: ๊ฒฝ์ง์„ฑ์˜ ๋Œ€๊ฐ€** ๋‹ˆ์ฝœ๋ผ๋Š” ๋‹จ์ผ ๋น„์ „(์ข์€ ์‚ฌ์ „๋ถ„ํฌ)์„ ๊ณ ์ˆ˜ํ•˜์—ฌ ๋ถ€์ •์  ํ”ผ๋“œ๋ฐฑ์—๋„ ํ•™์Šต ์‹คํŒจ, 'ํ‡ดํ™”๋œ' ๋ถ„ํฌ์˜ ํ•„์—ฐ์  ๊ท€๊ฒฐ | ๋ณด์ • ๋Šฅ๋ ฅ ๋ถ€์žฌ๋Š” ์‚ฌ๊ธฐ๋กœ ๊ท€๊ฒฐ | | | ๐Ÿ™โ†’โ† | **๊ฒฐ: ํ•ต์‹ฌ ์—ญ๋Ÿ‰ ์žฌ์ •์˜** ์ฐฝ์—…๊ฐ€์˜ ํ•ต์‹ฌ ์—ญ๋Ÿ‰์ด '์˜ฌ๋ฐ”๋ฅธ ๋น„์ „'์ด ์•„๋‹Œ '๋ถˆํ™•์‹ค์„ฑ์˜ ๋™์  ๋ณด์ • ๋Šฅ๋ ฅ'์ž„์„ ๋ฐํžˆ๊ณ  ์ •๋Ÿ‰์  ์˜์‚ฌ๊ฒฐ์ • ํ”„๋ ˆ์ž„์›Œํฌ ์ œ๊ณต | ์ฐฝ์—…๊ฐ€์ •์‹ ์˜ ์ƒˆ๋กœ์šด ์ •์˜์™€ ์‹ค์ฒœ์  ํ•จ์˜ |