# 🎯 Marr's Three Levels: Ambition as Promise Prior
## Overview: Marr's Levels Applied to Promise Architecture
- **Computational Level** (What & Why) → Endogenizing success probability through promise design
- **Algorithm Level** (How) → Four-step PRHC methodology with (φ, μ, τ) optimization
- **Implementation Level** (With What) → 32-paragraph framework with empirical validation
## 1. Computational Level - What and Why [Module 1: Romance]
### The Core Problem
**Fundamental Tension**: Nikola Tesla lost to Edison despite superior technology, Better Place failed despite $800M funding, yet Tesla Motors succeeded—why?
**Core Computational Challenge**: Transform success probability from exogenous parameter to strategic choice variable
**Three Forking Paths**:
1. **Fake it till you make it** (without checking) → Fraud
2. **Check before making** (excessive verification) → Paralysis
3. **Designed uncertainty** (optimal path) → Success
### Computational Goal: Optimal Promise Architecture
**Objective**: Design promise parameters (φ, μ, τ) that endogenize success probability P(s) while value V remains exogenous
**Success Probability Evolution (PRHC):**
- M0 baseline: P(s) = P₀ (constant, no agency)
- M1 parameterize: P(s) = φ (linear persuasion)
- M2 regularize: P(s) = φ(1-φ)ⁿ (sell × deliver)
- M3 hierarchize: P(s) = ∫φ(1-φ)ⁿ·Beta(φ; μτ, (1-μ)τ)dφ
- M4 calibrate: P(s|data) = ∫∫φ(1-φ)ⁿ·Beta(φ; μτ, (1-μ)τ)·p(τ|data)dφdτ
**Mathematical Formulation**:
```
Maximize: E[U] = P(s)·V - C(τ)
Where: P(s) is endogenous (choice variable)
V is exogenous (market-determined)
C(τ) = c·ln(τ+1)
Subject to: Learning capacity > ε/(n+1)
```
**Key Insight**: We endogenize success probability through promise architecture, transforming it from exogenous parameter to strategic choice.
## 2. Algorithm Level - How [Module 2: Intellectual]
### Algorithm: PRHC Methodology
**Core Algorithm**: Four-step promise architecture design
**Step 1 - Parameterize**:
```python
def parameterize_promise(venture):
n = count_critical_components()
# Software: n ≈ 2-3
# Manufacturing: n ≈ 5-6
# Deep tech: n ≈ 10+
φ = set_promise_level() # Based on market requirements
return φ, n
```
**Step 2 - Regularize**:
```python
def regularize_with_delivery(n):
μ_star = 1/(n+1) # Optimal aspiration
# Delivery constraint: P(deliver|φ) = (1-φ)ⁿ
# Yields promise levels:
# Software: 30-50% improvement
# Manufacturing: 15-20%
# Deep tech: <10%
return μ_star
```
**Step 3 - Hierarchize**:
```python
def hierarchize_with_distribution(μ, stage):
# Embed distributional flexibility
if stage == "early":
τ = random.uniform(3, 10) # Start low
else:
τ_max = μ*(1-μ)/ε - 1 # Learning bound
τ = min(τ_previous + 5, τ_max)
# Create Beta(φ; μτ, (1-μ)τ) distribution
return τ
```
**Step 4 - Calibrate**:
```python
def calibrate_with_feedback(market_data, μ, τ):
# Simulate and adjust based on market feedback
learning_capacity = μ*(1-μ)/(τ+1)
if learning_capacity < 0.02:
warning("Learning capacity critically low")
# Update beliefs: Beta posterior with market data
μ_new, τ_new = bayesian_update(μ, τ, market_data)
return μ_new, τ_new
```
### Model Progression Mechanisms (PRHC)
**M0 → M1**: Parameterize
- Recognize that promise level φ affects success
- P(s) transforms from constant P₀ to φ
**M1 → M2**: Regularize
- Add delivery constraint (1-φ)ⁿ
- P(s) = φ(1-φ)ⁿ balances sell and deliver
**M2 → M3**: Hierarchize
- Embed distributional flexibility through Beta(φ; μτ, (1-μ)τ)
- Preserve learning capacity μ(1-μ)/(τ+1)
**M3 → M4**: Calibrate
- Integrate market feedback through p(τ|data)
- Update posterior beliefs based on observed outcomes
## 3. Implementation Level - With What [Modules 3 & 4]
### Module 3: Empirical Implementation
**Natural Language to Mathematics**:
| Language Signal | τ Interpretation | μ Interpretation | Example |
|-----------------|-----------------|------------------|---------|
| "Roughly" | Low (3-5) | Context-dependent | "Roughly 200 miles" |
| "Approximately" | Medium (5-10) | Context-dependent | "Approximately 50% improvement" |
| "Exactly" | High (50+) | Precise value | "Exactly 3 minutes" |
| Range given | Low-medium | Range midpoint | "150-250 miles" |
| Point estimate | High | Stated value | "1,000 mile range" |
**Data Collection Protocol**:
```javascript
const extractPromiseArchitecture = (text) => {
const precisionMarkers = {
low: ["roughly", "approximately", "around", "~"],
high: ["exactly", "precisely", "guaranteed", "definitely"]
};
const hasRange = /\d+-\d+/.test(text);
const hasPrecision = precisionMarkers.high.some(m => text.includes(m));
return {
μ: extractAmbitionLevel(text),
τ: hasPrecision ? highPrecision : hasRange ? lowPrecision : medium,
timestamp: new Date(),
exaptationSpace: μ*(1-μ)/(τ+1)
};
};
```
### Module 4: Predictive Implementation
**Implementation Results for 32 Paragraphs**:
| Company | Promise Architecture | Learning Capacity | Outcome | Module |
|---------|---------------------|-------------------|---------|--------|
| Tesla | φ=0.3, μ=0.3, τ=10→40 | 0.02→0.005 | Success + Powerwall | 3: Examples |
| Better Place | φ=0.5, μ=0.5, τ=45 | 0.003 (rigid) | Bankruptcy | 3: Examples |
| Nikola | φ=0.8, μ=0.8, τ=5 | Fraud inevitable | Prison | 3: Examples |
| Industry Guidelines | μ* = 1/(n+1) | >0.02 required | Varies | 4: Implications |
**Critical Finding**: Ventures with σ² < 0.02 showed 80% failure rate and zero exaptation value
### Implementation Synthesis for 32 Paragraphs
**Complete Paper Architecture**:
```python
class AmbitionAsPromisePrior:
def __init__(self, module_structure):
# Module 1: Romance (6 paragraphs)
self.historical_framing = paragraphs[1]
self.core_contribution = paragraphs[2] # Endogenizing P(s)
self.three_paths = paragraphs[3]
self.prhc_method = paragraphs[4]
# Module 2: Theory (12 paragraphs)
self.parameters = {φ, μ, τ, n, V:exogenous, C}
self.models = [M0, M1, M2, M3, M4] # PRHC progression
# Module 3: Examples (8 paragraphs)
self.cases = {Tesla, BetterPlace, Nikola}
# Module 4: Implications (6 paragraphs)
self.implications = {scholars, practitioners, ecosystem}
def evolve_success_probability(self, stage):
"""Progress through M0→M1→M2→M3→M4 (PRHC)"""
if stage == 'M0':
return P_0 # No agency
elif stage == 'M1':
return φ # Parameterize
elif stage == 'M2':
return φ * (1-φ)**n # Regularize
elif stage == 'M3':
return integrate_beta_distribution() # Hierarchize
elif stage == 'M4':
return calibrate_with_data() # Calibrate
```
**Statistical Validation (Gelman's Critique)**:
Andrew Gelman's perspective reveals critical robustness concerns:
1. **Garden of Forking Paths**: Ventures retrospectively justify any outcome as validating initial promise architecture
2. **Survivorship Bias**: We observe successful adapters, not all who tried
3. **P-hacking Risk**: Multiple (μ,τ) measurements until significance found
**Robustness Checks**:
- Pre-registered (μ,τ) extraction protocols
- Bootstrapped confidence intervals for exaptation space
- Posterior predictive checks on promise evolution
- Multi-analyst concordance on precision coding
## Integration: Marr Meets 4 Modules
| Level | Module | Paragraphs | Key Implementation |
|-------|--------|------------|-------------------|
| **Computational** | Module 1 | 1-6 | Problem identification, core contribution |
| **Algorithm** | Module 2 | 7-18 | PRHC methodology, model progression |
| **Implementation** | Module 3 | 19-26 | Empirical cases and validation |
| **Implementation** | Module 4 | 27-32 | Implications and tools |
## Committee Contributions Across 32 Paragraphs
- **Scott Stern**: Module 1 (Paragraphs 1-6) - Paradox framing
- **Charlie Fine**: Module 2 (Paragraphs 7-18) - Complexity parameter n
- **Moshe Ben-Akiva**: Module 3 (Paragraphs 19-26) - Choice modeling
- **Vikash Mansinghka**: Module 3 (Paragraphs 19-26) - Probabilistic validation
- **Andrew Gelman**: Module 4 (Paragraphs 27-32) - Statistical criticism
## Final Implementation Wisdom
**"From M0 to M4 via PRHC"**—The 32 paragraphs trace how we endogenize success probability P(s) while value V remains market-determined. Entrepreneurs maximize E[U] = P(s)·V - C(τ) by progressing through Parameterize (M1), Regularize (M2), Hierarchize (M3), and Calibrate (M4), transforming success from exogenous luck to strategic choice.