# Evolution of Promise Design: Literature Classification Table
![[promise-evolution-diagram.svg]]
## Classification of Literature by Success Probability and Promise Level Functions
| Stage | Function Type | P(s) vs φ Relationship | Core Assumptions | Key Literature | Theoretical Contribution |
|-------|--------------|------------------------|------------------|----------------|-------------------------|
| **M-1** | Zero-order | P(s) = P₀ (constant) | Promises irrelevant to success | • Crawford & Sobel (1982) - Cheap talk<br>• Farrell & Rabin (1996) - Costless signaling | Treats promises as mere signals with no real impact |
| **M** | First-order | P(s) = φ | Bigger promises → more success | • Kamenica & Gentzkow (2011) - Bayesian persuasion<br>• Rayo & Segal (2010) - Optimal information disclosure<br>• Grossman (1981), Milgrom (1981) - Disclosure theory | Information design can manipulate beliefs and outcomes |
| **M+1** | Second-order | P(s) = φ(1-φ)ⁿ | Balance selling vs delivering | • Kremer (1993) - O-Ring theory<br>• Barlow & Proschan (1965) - Reliability theory<br>• Rivkin (2000) - Complexity strategies<br>• Ethiraj & Levinthal (2004) - Modularity | Operational complexity creates interior optimum<br>φ* = 1/(n+1) |
| **M+2** | Bayesian | Beta(μτ, (1-μ)τ) | Precision as design variable | • Raiffa & Schlaifer (1961) - EVSI<br>• Dixit & Pindyck (1994) - Real options<br>• Trigeorgis (1996) - Staged investment<br>• Jordan & Graves (1995) - Process flexibility | Design uncertainty structures<br>(μ*, τ*) joint optimization |
## Evolution of Entrepreneurial Agency
### Agency Evolution Across Stages
- **M-1**: Exogenous constraints only (promises don't affect outcomes)
- **M**: Subjective choice enabled (choose promise level)
- **M+1**: Bayesian learner (update from market signals)
- **M+2**: Evolutionary designer (architect of uncertainty structures)
### Core Theoretical Insights
#### 1. Traditional Economics (M-1)
**"Promises are mere cheap talk"**
- No commitment mechanism
- Babbling equilibrium
- Examples: Internal ventures with fixed budgets
#### 2. Behavioral Economics (M)
**"Bold promises as self-fulfilling prophecies"**
- Promise mobilizes resources
- Linear relationship creates maximum promise incentive
- Risk: Fraud temptation (Theranos, Nikola)
#### 3. Operations Management (M+1)
**"Complexity constrains promises"**
- Multiplicative reliability: φ(1-φ)ⁿ
- Optimal promise decreases with complexity
- φ* = 1/(n+1) balances sell vs deliver
- Failure: Better Place ignored n>15 complexity
#### 4. Our Theory (M+2)
**"Design both content and fidelity of uncertainty"**
- Aspiration μ: Promise level mean
- Precision τ: Distribution concentration
- Joint optimization: (μ*, τ*) = (1/(n+1), V·n/[c(n+1)²] - 1)
- Success: Tesla's graduated precision (τ: 5→12→30→60)
## Practical Implementation Framework
### Promise Design by Complexity Level
| Complexity | n value | Optimal φ* | Optimal τ* | Example Domain | Promise Strategy |
|------------|---------|------------|------------|----------------|------------------|
| **Low** | n ≈ 1 | 50% | High if V/c large | Software, Apps | Bold promises OK |
| **Medium** | n ≈ 5 | 17% | Moderate | Hardware, EVs | Conservative promises |
| **High** | n ≈ 10 | 9% | Low initially | Deep tech, Biotech | Minimal promises |
| **Extreme** | n > 15 | <6% | Very low | Infrastructure | Incremental only |
### Failure Modes and Success Patterns
#### Common Failure Modes
1. **M-1 Trap**: Treating promises as irrelevant (government contractors)
2. **M Trap**: Maximum promises without delivery (WeWork, Theranos)
3. **M+1 Trap**: Ignoring complexity constraints (Better Place)
4. **M+2a Trap**: Fixed high precision → learning trap (can't pivot)
#### Success Pattern (Tesla Example)
1. **Start vague**: Low precision (τ ≈ 5) with "200+ miles"
2. **Pay for precision**: Increase τ only after verification
3. **Gradual evolution**: τ progression: 5→12→30→60
4. **Maintain learning**: Keep μ(1-μ)/(τ+1) > 0.01
### Mathematical Synthesis
**Expected Utility Maximization:**
```
E[U] = V_sd × ∫φ(1-φ)ⁿ · Beta(φ; μτ, (1-μ)τ) dφ - c·ln(τ+1)
```
Where:
- **Likelihood**: Market reality (sellability × deliverability)
- **Prior**: Designed belief structure Beta(μτ, (1-μ)τ)
- **Cost**: Information/verification cost c·ln(τ+1)
### Key Propositions
1. **Financial Tightrope (M3.1)**: φ* = (V_sd - V_ns)/2(V_sd - V_snd)
2. **Complexity Ceiling (M3.2)**: φ* = 1/(n+1)
3. **Learning Trap (M4)**: Trap when μ(1-μ) < ε(τ+1)
4. **Optimal Architecture (M5)**: (μ*, τ*) = (1/(n+1), max{0, V·n/[c(n+1)²] - 1})
## Conclusion: From Object to Subject to Body
The evolution from M-1 to M+2 represents a fundamental transformation:
- **Object** (M-1): Passive, constrained by external forces
- **Subject** (M): Active choice-maker, but naive
- **Body** (M+1): Embodies operational constraints
- **Evolutionary Subject** (M+2): Designs uncertainty structures
> "We endogenize both the *content* (μ) and the *fidelity* (τ) of entrepreneurial claims, unifying persuasion, reliability, and staged experimentation in a single optimization problem."
### The Master vs Slave of Promise
- **Slave** (M+2a): Fixed τ, trapped by initial precision
- **Master** (M+2b): Choose both μ and τ, design uncertainty strategically
This framework transforms promise-making from art to science, providing mathematical foundations for entrepreneurial success.