2025-05-13 using [entrepreneur's proactiveness and social planner's role cld](https://claude.ai/chat/de0b02c6-a302-48bb-9b8f-0ead342e511c) | Focus Area | Symbol | What We Control | STRAP Variables | How It Works | Why It Matters | | ------------------ | ------ | ------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------ | --------------------------------------------------------------------------------------------------------------- | | **Infrastructure** | πŸ—οΈπŸ”„ | β€’ Cost of innovation activities<br>β€’ Available technology tools | β€’ <span style="color:blue">$c_jlt;/span> (action costs)<br>β€’ <span style="color:green">$a_jlt;/span> (available actions) | β€’ Shared tech platforms<br>β€’ Open standards<br>β€’ Modular building blocks | β€’ Makes each dollar go further<br>β€’ Helps startups meet requirements faster | | **Funding** | πŸ’°βš–οΈ | β€’ Which projects get funded<br>β€’ How money is distributed | β€’ <span style="color:green">$a_j^*lt;/span> (optimal actions)<br>β€’ <span style="color:red">$Rlt;/span> (budget) | β€’ Smart staged funding<br>β€’ Risk-reduction incentives<br>β€’ Results-based investments | β€’ Focuses money on highest-impact activities<br>β€’ Helps startups overcome their biggest hurdles | | **Connections** | πŸ”πŸ”— | β€’ Understanding what stakeholders want<br>β€’ Verifying what startups can deliver | β€’ <span style="color:purple">$\beta_{js}lt;/span> (stakeholder preferences)<br>β€’ <span style="color:orange">$xlt;/span> (venture attributes) | β€’ Preference databases<br>β€’ Verification systems<br>β€’ Smart matching tools | β€’ Reduces wasted effort finding partners<br>β€’ Creates better matches between startups and what the market needs | _This strategy connects directly to the STRAP framework from the thesis, using key variables that determine how effectively entrepreneurs can reduce uncertainty. Each variable represents a practical lever that ecosystem managers can adjust to improve both resource efficiency and stakeholder satisfaction._ **Color Key:** - <span style="color:blue">Blue</span>: Cost parameters - <span style="color:green">Green</span>: Action variables - <span style="color:red">Red</span>: Resource constraints - <span style="color:purple">Purple</span>: Preference parameters - <span style="color:orange">Orange</span>: Attribute variables ## 1. Infrastructure & Capacity Development πŸ—οΈπŸ”„ **Target Variables:** - **Method Capacity** ($\lambda_{\text{method}}$) - **Delivery Capacity** ($\lambda_{\text{delivery}}$) ![Infrastructure Strategy](https://i.imgur.com/placeholder.png) ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ πŸ—οΈINFRASTRUCTURE STRATEGY β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚Production Capacity │◄────►│Distribution Capacityβ”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β–² β–² β”‚ β”‚ β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Shared Technology β”‚ β”‚ Open Standards β”‚ β”‚ Platforms β”‚ β”‚ & Protocols β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Modular Growth β”‚ β”‚ Architecture β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ## 2. Capital & Risk Optimization πŸ’°βš–οΈ **Target Variables:** - **Resource Efficiency** ($\gamma$) - **Threshold Satisfaction** ($\lambda_j$) ![Capital Strategy](https://i.imgur.com/placeholder.png) ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ CAPITAL STRATEGY β”‚ β”‚ πŸ’° + βš–οΈ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Resource Efficiency β”‚ β”‚Threshold Satisfaction β”‚ β”‚ (Ξ³) │◄───►│ (Ξ»β±Ό) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β–² β–² β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Staged Risk β”‚ β”‚ Targeted De- β”‚ β”‚ Capital β”‚ β”‚ risking Funds β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Maximum Certainty β”‚ β”‚ Per Dollar β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ## 3. Information & Matching Systems πŸ”πŸ”— **Target Variables:** - **Stakeholder Preferences** ($\beta_{js}$) - **Venture Attributes** ($x$) ![Information Strategy](https://i.imgur.com/placeholder.png) ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ INFORMATION STRATEGY β”‚ β”‚ πŸ” + πŸ”— β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Stakeholder Preferencesβ”‚ β”‚ Venture Attributes β”‚ β”‚ (Ξ²β±Όβ‚›) │◄───►│ (x) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β–² β–² β”‚ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Preference β”‚ β”‚ Attribute β”‚ β”‚ Database β”‚ β”‚ Verification β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Smart Matching β”‚ β”‚ Engine β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ### Implementation Summary 1. **Infrastructure & Capacity (πŸ—οΈπŸ”„)** - Build modular platforms that simultaneously enhance method and delivery capabilities - Reduce the $\lambda$ values for production and distribution constraints - Create infrastructure that flexibly supports both integrated and modular firm structures 2. **Capital & Risk (πŸ’°βš–οΈ)** - Design capital allocation mechanisms that maximize information gain per dollar spent - Focus on optimizing both the global resource constraint ($\gamma$) and the most binding stakeholder thresholds ($\lambda_j$) - Create financial vehicles specifically targeted at reducing key uncertainties 3. **Information & Matching (πŸ”πŸ”—)** - Develop systems that make stakeholder preferences ($\beta_{js}$) transparent - Create verification mechanisms for venture attributes ($x$) - Build smart matching systems that connect ventures with compatible stakeholders This simplified approach creates a memorable, focused strategy targeting the most critical variables from the STRAP framework while addressing the key dynamics shown in your system models. Develop stakeholder decision matrices capturing spillover effects through state transitions ---- - [[# multi-perception]] - ![[2.2πŸ“Produce solution(πŸ”„) 2025-05-06-6.svg]] %%[[2.2πŸ“Produce solution(πŸ”„) 2025-05-06-6|πŸ–‹ Edit in Excalidraw]]%% --- Model stakeholder responses as binary accept/reject Multiple hypothesis testing that reduces weighted uncertainty with spillover effects visualize using model network using https://claude.ai/chat/232902e9-7bc9-4c27-8cc9-94f6b2e18c0a, ### Figure C.7.1: Marginal Benefit vs. Marginal Cost Determining Optimal Sample Size This figure illustrates the balance between the declining marginal benefit (Ξ”EU curve) and the fixed marginal cost (cy) that determines the optimal sample size n*. The graph shows: - A decreasing curve representing the marginal information gain from each additional sample - A horizontal line representing the fixed cost per sample - The intersection point where marginal benefit equals marginal cost, marking the optimal sample size n* - Beyond this point, the marginal benefit becomes less than the marginal cost, showing diminishing returns ### Figure C.7.2: Posteri2025-05-09or Uncertainty Reduction as a Function of Sample Size This figure shows how posterior uncertainty (entropy) diminishes as sample size increases, with different curves for different prior confidence levels: - The blue curve represents low prior confidence (low Ξ±), showing a steeper initial decline in ### Figure C.7.2: Posterior Uncertainty Reduction as a Function of Sample Size (continued) This figure shows how posterior uncertainty (entropy) diminishes as sample size increases, with different curves for different prior confidence levels: - The blue curve represents low prior confidence (low Ξ±), showing a steeper initial decline in uncertainty - The orange curve represents high prior confidence (high Ξ±), showing a flatter trajectory - The figure demonstrates why more samples are needed when initial confidence is low - Both curves eventually converge to a similar uncertainty level, but require different sample sizes to reach an acceptable uncertainty threshold - The optimal sample sizes (n_₁ and n_β‚‚) are marked at the points where each curve crosses the acceptable uncertainty threshold ### Figure C.7.3: Marginal Benefit Curves for Different Stakeholders This figure illustrates how different stakeholders have different marginal benefit curves and cost thresholds, resulting in different optimal sample sizes: - Three stakeholders are represented: a regulator (risk-averse), an entrepreneur (growth-focused), and an investor (balanced) - The regulator's curve starts higher (high aversion to Type I errors/false positives) but has a low marginal cost threshold, resulting in a larger optimal sample size - The entrepreneur's curve is moderate but has a high cost threshold (high opportunity cost), leading to a smaller optimal sample size - The investor has a balanced approach with a moderate cost threshold, resulting in a medium sample size - The intersection points of each marginal benefit curve with its corresponding cost threshold determine the stakeholder-specific optimal sample sizes - Annotations highlight how different stakeholders value information differently based on their error trade-off preferences These figures effectively illustrate the key concepts from Appendix C.7, showing how optimal sample size is determined by balancing marginal benefits against costs, how posterior uncertainty reduction depends on prior confidence, and how different stakeholders with different risk preferences require different levels of evidence. 2025-05-03 # multi-perception using [concept mapping btw max flow and min uncertainty cld](https://claude.ai/chat/970b2203-3b16-4b53-a3bb-31ed269d3e00) building on [business model 3d cld](https://claude.ai/chat/f4644750-4be8-4c60-b4ad-23b903510a08) and [code](https://gist.github.com/hyunjimoon/47ac97fb2cb53ae28adbfdcbf6ba2a78), gradient of $\frac{d \textcolor{red}{a^*}}{d \textcolor{purple}{w}}$, stakeholder utility or uncertainty evaluation $(B\textcolor{green}{S} = [\textcolor{#3399FF}{U_d}, \textcolor{#3399FF}{U_s}, \textcolor{#3399FF}{U_i}])$ using [optimizing startup operations cld](https://claude.ai/chat/e254be6a-a4fc-45ce-bbc7-916d62d6de0d) ![[3.2πŸ“Produce solution 2025-05-01-21.svg]] %%[[3.2πŸ“Produce solution 2025-05-01-21|πŸ–‹ Edit in Excalidraw]]%%# Sublime Systems Stakeholder Decision Matrices | | Operational Partner Decision Matrix ($B_o$) | Customer Decision Matrix ($B_c$) | Investor Decision Matrix ($B_i$) | | -------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | | **Observable Attributes:** | - Technical Performance (unproven β†’ lab validated β†’ field validated)<br>- Compliance with Standards (non-compliant β†’ partial compliance β†’ full compliance)<br>- Testing Scale (lab samples β†’ pilot scale β†’ production scale)<br>- Financial Backing (pre-seed β†’ major funding β†’ government backing)<br> | - Performance (inferior β†’ equivalent β†’ superior)<br>- Carbon Reduction (30-50% β†’ 50-80% β†’ 80-100%)<br>- Cost Premium (over 50% β†’ 20-50% β†’ under 20%)<br>- Regulatory Status (experimental β†’ limited approval β†’ full approval) | - Technology Maturity (lab prototype β†’ pilot scale β†’ commercial)<br>- Carbon Reduction Potential (incremental β†’ significant β†’ revolutionary)<br>- Market Traction (interest only β†’ initial orders β†’ paying customers)<br>- Team Qualifications (academic only β†’ mixed team β†’ industry veterans) | | **Perceptual Frameworks:** | Technical Validation: "Is this cement proven safe?"<br>Industry Advancement: "Will this advance standards?" | - Risk Assessment: "Is this cement safe to use?"<br>- Value Proposition: "Is the green premium worth it?" | - Market Impact: "Will this disrupt the cement industry?"<br>- Execution Capability: "Can this team scale production?"<br> | ## Operational Partner Decision Matrix ($B_o$) This matrix maps observable startup attributes to partnership decisions for material testing facilities, construction material suppliers, and other operational partners. |Observable Attribute|Level 1|Level 2|Level 3|Decision Impact (0-1)| |---|---|---|---|---| |**Technical Performance**|Unproven|Lab validated|Field validated|0.9| |**Manufacturing Readiness**|Theoretical process|Working prototype|Scalable process|0.8| |**Compliance with Standards**|Non-compliant|Partially compliant|Fully compliant|0.9| |**Integration Complexity**|Major changes needed|Moderate adaptation|Drop-in replacement|0.7| |**Market Demand Signals**|Speculative|Early adopter interest|Confirmed demand|0.6| |**Financial Stability**|Pre-seed funding|Major funding secured|Revenue generating|0.5| |**IP Protection**|Provisional patents|Filed patents|Granted patents|0.4| |**Partnership Terms**|Exclusive license|Joint development|Open collaboration|0.3| **Partnership Decision Function:** $P(Partner) = \sigma(\sum_{i=1}^{n} w_i \cdot Attribute_i - \theta)$ Where: - $w_i$ is the Decision Impact weight for attribute $i$ - $\theta$ is the partnership threshold (currently 3.0) - $\sigma$ is the sigmoid function: $\sigma(x) = \frac{1}{1+e^{-x}}$ **Sublime's Current Position (May 2025):** - Technical Performance: Level 2 (Lab validated, first commercial application) - Manufacturing Readiness: Level 2 (Working prototype at pilot scale) - Compliance with Standards: Level 2 (Partially compliant with ASTM standards) - Integration Complexity: Level 3 (Claimed to be drop-in replacement) - Market Demand Signals: Level 2 (Early adopter interest from eco-builders) - Financial Stability: Level 2 (DOE funding secured) - IP Protection: Level 2 (Patent applications filed) - Partnership Terms: Level 3 (Open collaboration model) **Current $P(Partner)$ = 0.68** ## Customer Decision Matrix ($B_c$) This matrix maps observable startup attributes to purchase decisions for construction companies, developers, and other potential cement buyers. | Observable Attribute | Level 1 | Level 2 | Level 3 | Decision Impact (0-1) | | ---------------------------- | --------------------- | ---------------------- | --------------------- | --------------------- | | **Performance Metrics** | Inferior to Portland | Equivalent to Portland | Superior to Portland | 0.9 | | **Cost Premium** | >50% | 20-50% | <20% | 0.8 | | **ESG Certification Value** | No certification | Standard certification | Premium certification | 0.7 | | **Supply Chain Reliability** | Unproven | Limited capacity | Robust capacity | 0.8 | | **Regulatory Approval** | Experimental use only | Limited approval | Full code approval | 0.9 | | **Case Studies/References** | None | Early projects | Multiple references | 0.6 | | **Technical Support** | Limited | Standard | Comprehensive | 0.4 | | **Market Differentiation** | None | Moderate | Significant | 0.5 | **Purchase Decision Function:** $P(Purchase) = \sigma(\sum_{i=1}^{n} w_i \cdot Attribute_i - \theta)$ Where: - $w_i$ is the Decision Impact weight for attribute $i$ - $\theta$ is the purchase threshold (currently 3.2) - $\sigma$ is the sigmoid function: $\sigma(x) = \frac{1}{1+e^{-x}}$ **Sublime's Current Position (May 2025):** - Performance Metrics: Level 2 (Claimed to be equivalent to Portland) - Cost Premium: Level 1 (Currently >50% higher than Portland) - ESG Certification Value: Level 3 (Premium "zero-carbon" certification potential) - Supply Chain Reliability: Level 1 (Unproven at scale) - Regulatory Approval: Level 2 (Limited approval for non-structural applications) - Case Studies/References: Level 2 (One Boston Wharf Road project) - Technical Support: Level 2 (Standard support) - Market Differentiation: Level 3 (Significant "true zero" carbon claim) **Current $P(Purchase)$ = 0.56** ## Investor Decision Matrix ($B_i$) This matrix maps observable startup attributes to investment decisions for Sublime Systems' cement technology. |Observable Attribute|Level 1|Level 2|Level 3|Decision Impact (0-1)| |---|---|---|---|---| |**Testing Facility Approval**|None|Preliminary tests|Full certification|0.7| |**Production Scale**|Lab scale (<1 ton)|Pilot plant (250 TPY)|Commercial (30,000+ TPY)|0.8| |**Customer Commitments**|Interest only|Letters of intent|Binding contracts|0.9| |**Team Experience**|Academic only|Academic + startup|Industry veterans|0.6| |**Regulatory Status**|Unknown|Under review|Approved for construction|0.8| |**Capital Requirements**|>$200M|$87-200M|<$87M|0.5| |**Carbon Reduction**|<50%|50-80%|>80%|0.4| |**Production Cost**|>2x Portland|1.3-2x Portland|≀1.3x Portland|0.7| **Investment Decision Function:** $P(Invest) = \sigma(\sum_{i=1}^{n} w_i \cdot Attribute_i - \theta)$ Where: - $w_i$ is the Decision Impact weight for attribute $i$ - $\theta$ is the investment threshold (currently 2.5) - $\sigma$ is the sigmoid function: $\sigma(x) = \frac{1}{1+e^{-x}}$ **Sublime's Current Position (May 2025):** - Testing Facility Approval: Level 2 (Preliminary tests completed) - Production Scale: Level 2 (250 TPY pilot plant) - Customer Commitments: Level 2 (Letters of intent for 45,000 tons) - Team Experience: Level 3 (Founded by MIT researchers with industry connections) - Regulatory Status: Level 2 (DOE funding secured, permitting in progress) - Capital Requirements: Level 2 ($87M from DOE, additional private investment needed) - Carbon Reduction: Level 3 (>90% reduction claimed) - Production Cost: Level 1 (Currently >2x Portland cement) **Current $P(Invest)$ = 0.73** ## Interpretation and Strategy Implications These decision matrices reveal Sublime Systems' key strategic challenges: 1. **Investors** are most likely to engage (P=0.73) due to strong climate tech interest, but are concerned about production costs and capital requirements. 2. **Operational Partners** show moderate engagement likelihood (P=0.68), with technical validation and standards compliance being critical barriers. 3. **Customers** have the lowest current engagement probability (P=0.56), primarily constrained by cost premium, supply chain reliability, and regulatory approval. The optimal strategy involves: 1. **Sequential Validation**: First focus on improving technical validation and reducing production costs to strengthen operational partner relationships. 2. **Proactive Testing**: Simultaneously engage early-adopter customers with strong ESG priorities to build case studies while production scales. 3. **Dynamic Calibration**: Shift focus from technical validation to cost reduction and supply reliability as production scales, to broaden customer adoption beyond early adopters. This mathematical approach identifies actionable priorities for Sublime Systems while balancing the interdependent stakeholder concerns in the conservative construction materials industry. [[KF2_propose_model_hypothesis]] [[eval(vikash, probcomp_ent)]]