2025-05-14 using [Exploring Entropy over Utility in Entrepreneurial Frameworks cld](https://claude.ai/chat/ccf5f30e-e0ab-4be6-887a-ba75b5818037) Implement LLM-based synthetic stakeholders with hierarchical Bayesian perception models [[🗄️🧠scott]] # STRAP Algorithm: Step-by-Step Walkthrough with Color-Coded Math ## Core Algorithm Structure ``` Require: p_{js}^{(0)}, μ_j, c_j, R, f_{js}, w_j Ensure: sequence of a_j^* 1: init H_j^{(0)}, λ_j = w_j(μ_j - ∑_s f_{js}p_{js}^{(0)})/μ_j, γ = max_a ∑_j w_j∆H_j(a)/c_a 2: while R > 0 and thresholds unmet do 3: for all a with c_a ≤ R do 4: compute ∆H, ∆(f_j·p_j) 5: score S(a) = [∆H + ∑_j λ_j∆(f_j·p_j)]/c_a 6: end for 7: select a^* = arg max S(a); R-= c_a^*; update p_{js}, H_j; remove a^* 8: update λ_j = max{0, w_j(μ_j - ∑_s f_{js}p_{js})/μ_j}; γ = S(a^*) 9: end while ``` ### Inputs and Initialization: - <span style="color:blue">p<sub>js</sub><sup>(0)</sup></span>: Initial stakeholder choice probabilities - <span style="color:orange">μ<sub>j</sub></span>: Threshold targets for stakeholders - <span style="color:cyan">c<sub>j</sub></span>: Cost coefficients for actions - <span style="color:cyan">R</span>: Available budget - <span style="color:orange">f<sub>js</sub></span>: State values for stakeholder j in state s - w<sub>j</sub>: Stakeholder importance weights ### Line 1: Initialize key variables - H<sub>j</sub><sup>(0)</sup>: Initial uncertainty for each stakeholder - λ<sub>j</sub> = w<sub>j</sub>(<span style="color:orange">μ<sub>j</sub></span> - ∑<sub>s</sub> <span style="color:orange">f<sub>js</sub></span><span style="color:blue">p<sub>js</sub><sup>(0)</sup></span>)/<span style="color:orange">μ<sub>j</sub></span> - This initializes dual variables proportional to threshold shortfall - γ = max<sub>a</sub> ∑<sub>j</sub> w<sub>j</sub>ΔH<sub>j</sub>(a)/<span style="color:cyan">c<sub>a</sub></span> - Resource dual variable - maximum uncertainty reduction per cost unit ### Line 2-3: Main loop conditions - Continue while <span style="color:cyan">R</span> > 0 (budget remains) - And while thresholds are unmet (∃j: ∑<sub>s</sub> <span style="color:orange">f<sub>js</sub></span>p<sub>js</sub> < <span style="color:orange">μ<sub>j</sub></span>) - Consider all actions a with <span style="color:cyan">c<sub>a</sub></span> ≤ <span style="color:cyan">R</span> (affordable) ### Lines 4-5: Score calculation - For each action, compute: - ΔH: Uncertainty reduction - Δ(<span style="color:orange">f<sub>j</sub></span>·p<sub>j</sub>): Expected state improvement - Score S(a) = [ΔH + ∑<sub>j</sub> λ<sub>j</sub>Δ(<span style="color:orange">f<sub>j</sub></span>·p<sub>j</sub>)]/<span style="color:cyan">c<sub>a</sub></span> - Combines uncertainty reduction and threshold satisfaction per cost unit ### Line 7: Action selection and update - a<sup>*</sup> = arg max S(a): Select action with highest score - <span style="color:cyan">R</span>-= <span style="color:cyan">c<sub>a*</sub></span>: Decrease remaining budget - Update p<sub>js</sub>, H<sub>j</sub>: Update probabilities and uncertainties - Remove a<sup>*</sup>: Remove selected action from consideration ### Line 8: Dual variable updates - λ<sub>j</sub> = max{0, w<sub>j</sub>(<span style="color:orange">μ<sub>j</sub></span> - ∑<sub>s</sub> <span style="color:orange">f<sub>js</sub></span>p<sub>js</sub>)/<span style="color:orange">μ<sub>j</sub></span>} - Updates threshold dual variables based on current threshold shortfall - γ = S(a<sup>*</sup>): Update resource dual variable to match selected action's score ## Real-World Example: Sublime Systems Walkthrough Let me demonstrate how this algorithm works for Sublime Systems: ### Initial State: - Stakeholders: Investors, Customers, Certifiers - Initial uncertainties: H<sub>inv</sub>=1.58, H<sub>cust</sub>=1.33, H<sub>cert</sub>=1.40 bits - Thresholds: <span style="color:orange">μ<sub>inv</sub></span>=0.7, <span style="color:orange">μ<sub>cust</sub></span>=0.4, <span style="color:orange">μ<sub>cert</sub></span>=0.5 - Budget: <span style="color:cyan">R</span>=$200,000 ### First Iteration: 1. Calculate λ<sub>j</sub> values based on threshold shortfalls: - λ<sub>cert</sub>=0.8 (highest despite meeting threshold) - λ<sub>cust</sub>=0.6 - λ<sub>inv</sub>=0.2 (lowest despite being below threshold) 2. For each affordable action, calculate: - For Regulatory Certification: - ΔH<sub>cert</sub>=0.43, Δp<sub>cert,Accept</sub>=0.20 - Score = (0.43 + 0.8×0.20)/<span style="color:cyan">55,000</span> = 0.0107 bits/$1,000 3. Select a<sup>*</sup> = Regulatory Certification (highest score) - <span style="color:cyan">R</span> = $200,000 - <span style="color:cyan">$55,000</span> = $145,000 - Update: H<sub>cert</sub> = 1.40 - 0.43 = 0.97 bits 4. Update λ<sub>j</sub> values based on new threshold shortfalls ### Second Iteration: 1. For Customer Pilot: - ΔH<sub>cust</sub>=0.35, Δp<sub>cust,Accept</sub>=0.25 - Score now highest due to updated λ<sub>j</sub> values 2. Select a<sup>*</sup> = Customer Pilot - <span style="color:cyan">R</span> = $145,000 - <span style="color:cyan">$80,000</span> = $65,000 - Update: H<sub>cust</sub> = 1.33 - 0.35 = 0.98 bits ### Remaining Iterations: Following the same pattern for: - Carbon Credit Analysis (<span style="color:cyan">$25,000</span>) - Pricing Structure (<span style="color:cyan">$15,000</span>) - Partial Manufacturing (<span style="color:cyan">$22,000</span>) The critical insight in the 5th iteration is that even though uncertainty increases, the action is selected because: - The λ<sub>j</sub> values have increased significantly for stakeholders near but not meeting thresholds - The term ∑<sub>j</sub> λ<sub>j</sub>Δ(<span style="color:orange">f<sub>j</sub></span>·p<sub>j</sub>) now dominates ΔH in the score - This causes the algorithm to prioritize threshold satisfaction over uncertainty reduction This demonstrates how the algorithm dynamically balances uncertainty reduction and threshold satisfaction based on the evolving state of the system, showing the power of the primal-dual formulation in making these trade-offs automatically and mathematically. --- Decompose uncertainty per cost into: • B: uncertainty per state • D: state transitions per action • C: action cost Using bottleneck identification and LP formulation 2025-05-01 ## D matrix using [classifying industry analysis into individual vs institutaional cld](https://claude.ai/chat/e16e91bc-0fb7-4b13-a3e8-0587e71eb3d3) 1 ## C matrix ![[5.2📐Produce solution 2025-05-01-22.svg]] %%[[5.2📐Produce solution 2025-05-01-22|🖋 Edit in Excalidraw]]%% The attached diagram illustrates how entrepreneurial decision-making can be understood through the lens of network flow algorithms. It shows entrepreneurs navigating through different states (S₀→S₁→S₂→S₃) by systematically reducing three types of uncertainty: demand (market), supply (operational), and investor (capital). Starting with limited resources (9 units), entrepreneurs make strategic choices to allocate these resources to actions that reduce uncertainty, similar to how network flow algorithms identify and utilize residual capacity in paths. The visualization demonstrates the Markovian process where each state encapsulates current uncertainty levels, and entrepreneurs select actions that minimize the weighted sum of uncertainties while earning proportional rewards for uncertainty reduction. The comparison table maps key concepts between network flow and entrepreneurial uncertainty, showing how residual capacity corresponds to unreduced uncertainty, bottlenecks to resource constraints, and augmenting paths to action sequences, ultimately revealing that both algorithms operate on the principle of identifying and exploiting unused potential through sequential optimization.