# Promise Precision and Venture Funding **πŸ”— μž‘μ „ μ§€νœ˜λΆ€**: `../../μ‚Όλ„μˆ˜κ΅°/` (일일 μˆœν™˜ 좔적) **πŸ›οΈ μ „νˆ¬ λ³ΈλΆ€**: 이 폴더 (μ΅œμ’… κ²°κ³Όλ¬Ό) --- ## 1. Hypotheses **H1 (Early Stage - Short-term Cost):** α₁ < 0 πŸ˜΅β€πŸ’« Vague promises hurt at first β†’ Lower initial funding **H2 (Later Stage - Long-term Benefit):** β₁ > 0 πŸ˜΅β€πŸ’« Vague promises benefit later β†’ Higher survival probability --- ## 2. Data ### Source Longitudinal data with company descriptions and funding data at early and later stages from venture databases (Pitchbook, Crunchbase, or similar). ### Sample Structure * **Temporal**: Early-stage investments β†’ Later-stage outcomes * **Cross-section**: Technology ventures with detailed descriptions * **Panel**: Same firms tracked across funding rounds * **Target N**: ~30-75 firms with complete data ### Key Variables | Variable | Measurement | Role | |----------|-------------|------| | πŸ˜΅β€πŸ’« Vagueness | Inverse of linguistic certitude (LIWC) in company description | Independent | | πŸ’° Early_Funding | Funding amount at early stage ($ millions) | Dependent (Model 1) / Control (Model 2) | | 🎯 Later_Success | Binary: 1 if raised later-stage funding, 0 otherwise | Dependent (Model 2) | | Team_Size | Number of employees at early stage | Control | | Prior_Exit | Founder has previous exit (binary) | Control | | Sector | Industry category | Control | --- ## 3. Models ### Model 1: Early-Stage Funding Amount (OLS) ``` πŸ’° Early_Funding_i = Ξ±β‚€ + α₁ Β· πŸ˜΅β€πŸ’«Vagueness_i + Controls + Ξ΅_i ``` **Expected:** α₁ < 0 (vagueness β†’ less initial funding) ### Model 2: Later-Stage Success (Logistic) ``` logit(🎯 Later_Success_i) = Ξ²β‚€ + β₁ Β· πŸ˜΅β€πŸ’«Vagueness_i + Ξ²β‚‚ Β· πŸ’°Early_Funding_i + Controls + Ξ΅_i ``` **Expected:** β₁ > 0 (vagueness β†’ better survival, controlling for early funding) --- ## 4. Expected Patterns ### Pattern A: Early Stage (Short-term Cost) ``` Funding ↑ | |\ | \ | \_____ |____________ πŸ˜΅β€πŸ’« Vagueness β†’ Precise Vague ``` **Interpretation:** Vague descriptions β†’ lower early-stage funding ### Pattern B: Later Stage (Long-term Benefit) ``` Success ↑ | ____/ | / | / | / |/____________ πŸ˜΅β€πŸ’« Vagueness β†’ Precise Vague ``` **Interpretation:** Vague descriptions β†’ higher later-stage success rate --- ## 5. Analysis Pipeline ### νŒŒμ΄ν”„λΌμΈ μœ„μΉ˜ ``` code/ β”œβ”€β”€ 01_process_company_data.py (데이터 μΆ”μΆœ & μ •μ œ) β”œβ”€β”€ 02_process_deal_data.py (νŽ€λ”© 데이터 처리) β”œβ”€β”€ 03_create_panel.py (νŒ¨λ„ ꡬ성) β”œβ”€β”€ 04_run_analysis.py (Model 1 & 2) └── 05_create_deliverables.py (Tables & Figures) ``` ### 단계 1. **Data Prep**: Extract funding records, compute vagueness scores 2. **Model 1**: OLS regression (early funding ~ vagueness) 3. **Model 2**: Logistic regression (later success ~ vagueness + early funding) 4. **Visualization**: Create Pattern A & B with actual data 5. **Robustness**: Sector effects, alternative vagueness measures --- ## 6. Deliverables | Item | μœ„μΉ˜ | μ„€λͺ… | |------|------|------| | **Table 1** | `output/table1_descriptive.csv` | Descriptive statistics | | **Table 2** | `output/table2_model1.csv` | Model 1 results (early stage) | | **Table 3** | `output/table3_model2.csv` | Model 2 results (later stage) | | **Figure 1** | `output/figure1_early.png` | Vagueness β†’ Early funding | | **Figure 2** | `output/figure2_later.png` | Vagueness β†’ Later success | --- ## πŸ”„ κ²¬λ¦¬μ‚¬μ˜ μˆœν™˜ μž‘μ—…λ²• 이 μ—°κ΅¬λŠ” **μ‚Όλ„μˆ˜κ΅° 폴더**μ—μ„œ 일일 μˆœν™˜μœΌλ‘œ μ§„ν–‰λ©λ‹ˆλ‹€: ``` μ•„μΉ¨ (見) ↓ μ‚Όλ„μˆ˜κ΅°/μ „νˆ¬μΌμ§€.md (κ³„νš) ↓ μž‘μ—… (利 β†’ 思 β†’ ηΎ©) ↓ μ‚Όλ„μˆ˜κ΅°/1_利/ (ChatGPT ν”„λ‘œν† νƒ€μž…) μ‚Όλ„μˆ˜κ΅°/2_思/ (Claude 정ꡐ화) μ‚Όλ„μˆ˜κ΅°/3_ηΎ©/ (Gemini 검증) ↓ βœ… 검증 μ™„λ£Œ ↓ 이 폴더 (empirics/)둜 이동 ↓ code/ (μ΅œμ’… μ½”λ“œ) output/ (μ΅œμ’… κ²°κ³Ό) ``` **일일 μ›Œν¬ν”Œλ‘œμš°**: `../../μ‚Όλ„μˆ˜κ΅°/README.md` μ°Έμ‘° --- ## πŸ“… 3μ£Ό κ³„νš ### Week 1 (10.25-10.31): Data + Model 1 **λͺ©ν‘œ**: Table 1, 2 μ™„μ„± - Day 1-2: 데이터 νŒŒμ΄ν”„λΌμΈ ꡬ좕 - Day 3-4: Model 1 κ΅¬ν˜„ - Day 5-7: 검증 & Table 2 **μ‚°μΆœ**: `output/table1*.csv`, `output/table2*.csv` --- ### Week 2 (11.01-11.07): Model 2 + Visualization **λͺ©ν‘œ**: Table 3, Figure 1, 2 μ™„μ„± - Day 8-10: Model 2 (Logistic) - Day 11-12: μ‹œκ°ν™” - Day 13-14: Robustness checks **μ‚°μΆœ**: `output/table3*.csv`, `output/figure*.png` --- ### Week 3 (11.08-11.15): Paper **λͺ©ν‘œ**: λ…Όλ¬Έ 초고 - Day 15-17: Introduction, Theory, Method - Day 18-19: Results, Discussion - Day 20-21: μ΅œμ’… 제좜 **μ‚°μΆœ**: `../theory/paper_draft.md` --- ## 🎯 핡심 연결점 ### 이둠적 기반 - **OIL Framework**: Ο„* = max{0, √(V/4i) - 1} - **Strategic Ambiguity**: When should ventures be vague? - **Signaling Theory**: What do vague promises signal? ### Empirical Contribution Promise precision has **non-monotonic effects**: - **Short-term** (H1): Precision helps (credibility) β†’ α₁ < 0 - **Long-term** (H2): Vagueness helps (flexibility) β†’ β₁ > 0 --- ## 🚨 λ§‰νž λ•Œ ### 연ꡬ 섀계 질문 β†’ 이 파일 μž¬λ… ### 일일 μž‘μ—… λ§‰νž˜ β†’ `../../μ‚Όλ„μˆ˜κ΅°/README.md` ### μ½”λ“œ 문제 β†’ `code/PIPELINE_GUIDE.md` --- **"μ‹ μ—κ²ŒλŠ” 아직 12μ²™μ˜ λ°°κ°€ μžˆμŠ΅λ‹ˆλ‹€"** **이 workflowλŠ” 우리의 μ§€λ„μž…λ‹ˆλ‹€** πŸ—ΊοΈ