๊ฐœ์„  ๋ฒ„์ „ ## ๐Ÿ“ 32-Paragraph Scaffold (v2.1) ### Chapter 1: Introduction (7ยถ) | ยถ | ๋‹จ๊ณ„ | First Sentence | |:-:|:-:|:--| | 1 | ๐Ÿ“ฟ **Gospel** | "The Lean Startup canon prescribes a single focused option (k=1) and rapid iteration as the dominant strategy for resource-constrained ventures." | | 2 | ๐Ÿงฉ **Puzzle** | "Yet in deep-tech settings such as autonomous vehicles, quantum computing and synthetic biology, ventures that maintained multiple options survived while highly focused peers with k=1 often failed." | | 3 | ๐Ÿ˜ฎ **RQ** | "This paper asks when the Lean Startup prescription breaks down, and how founders should choose the number of strategic options k* under extreme uncertainty and heterogeneous investors." | | 4 | ๐Ÿ”Ž **Lens** | "We introduce the 'Promise Vendor' model, treating the entrepreneur as a newsvendor of strategic options who uses future promises (V) to infer commitment and flexibility costs (Cแตค, Cโ‚’)." | | 5 | ๐Ÿ˜† **Solution** | "Our central result is that the Critical Ratio CR = Cแตค/(Cแตค + Cโ‚’) maps into an optimal option count k* = F_Dโปยน(CR), and that investor heterogeneity can render k* undefined in a 'Murky Middle' of intermediate specificity Sโ‚‚ โ‰ˆ 0.5." | | 6 | ๐Ÿ—บ๏ธ **Closest** | "Relative to real-options work on investment timing and discovery-driven planning, we focus on investor heterogeneity and prove conditions under which no equilibrium k* exists in the Murky Middle." | | 7 | ๐Ÿ—„๏ธ **Roadmap** | "Section 2 develops the heterogeneous payoff structure and k* non-existence result, Section 3 provides a calibrated deep-tech illustration drawing on Papers U and C, and Section 4 discusses strategic implications." | --- ### Chapter 2: Theory (9ยถ) | ยถ | ๋‚ด์šฉ | ์‚ฐ์ถœ๋ฌผ | |:-:|:--|:--| | 8 | **Lit: Real Options** โ€” ๋ถˆํ™•์‹ค์„ฑ ํ•˜์—์„œ ์˜ต์…˜๊ฐ€์น˜, โ€œwait optionโ€ (Dixit & Pindyck, Trigeorgis) | | | 9 | **Lit: Newsvendor** โ€” k* = F_Dโปยน(CR)์—์„œ **Cแตค, Cโ‚’๊ฐ€ exogenous์ด๊ณ  known**์ด๋ผ๋Š” ๊ฐ€์ • ๋ช…์‹œ | | | 10 | **Position**: Promise Vendor๋Š” ์ด๋ฅผ **์—ญ์ „** โ€“ V์™€ ํˆฌ์ž์ž ์กฐํ•ฉ์œผ๋กœ๋ถ€ํ„ฐ (Cแตค, Cโ‚’)์™€ CR์„ ์ถ”๋ก  | ๐Ÿ—„๏ธ Comparison Table: Classic Newsvendor vs Promise Vendor | | 11 | **Setup: Costs** โ€” Cโ‚’ (overage/too many options), Cแตค (underage/too few options & lock-in) ์ •์˜, Paper C์˜ 2.7ร— gap์„ Cแตค ์บ˜๋ฆฌ๋ธŒ๋ผ์ด์…˜ ์•ต์ปค๋กœ ์‚ฌ์šฉ | | | 12 | **Investor Types**: Analyst (Cโ‚’ ๋ฏผ๊ฐ, Sโ‚‚ ์„ ํ˜ธ) vs Believer (Cแตค ๋ฏผ๊ฐ, Sโ‚‚ ๊ธฐํ”ผ) | ๐Ÿ–ผ๏ธ Fig 1: 2-Type Investor Payoff Schematic | | 13 | **Payoff Functions**: ฯ€_A(k, Sโ‚‚), ฯ€_B(k, Sโ‚‚) ํ˜•ํƒœ ์„ค์ • ๋ฐ ๋‹จ์กฐ์„ฑ/๋ณผ๋ก์„ฑ ๊ฐ€์ • | | | 14 | **Mixed Market**: ฯ€_M(k, Sโ‚‚; ฮฑ) = ฮฑยทฯ€_A + (1-ฮฑ)ยทฯ€_B, ฮฑ๋ฅผ ํˆฌ์ž์ž ์กฐํ•ฉ ๋งค๊ฐœ๋ณ€์ˆ˜๋กœ ๋„์ž… | | | 15 | **k* Non-existence**: Sโ‚‚ โ‰ˆ 0.5, ฮฑ โˆˆ (0,1)์—์„œ โˆ‚ฯ€_A/โˆ‚k์™€ โˆ‚ฯ€_B/โˆ‚k ๋ถ€ํ˜ธ๊ฐ€ ๋ฐ˜๋Œ€ โ†’ ฯ€_M์˜ ๋‚ด์  ์ตœ์ ํ•ด ๋ถ€์žฌ ์ฆ๋ช… | ๐Ÿ–ผ๏ธ Fig 2: No-Equilibrium Zone in (Sโ‚‚, ฮฑ) space | | 16 | **Hypotheses**: H_N1 (CRโ†‘ โ†’ ์ด๋ก ์ƒ k*โ†‘), H_N2 (Sโ‚‚ โ‰ˆ 0.5 & mixed investors โ†’ ํˆฌ์ž/์˜ต์…˜ ์„ ํƒ ๋ชจ๋‘ ์–ต์ œ) | | --- ### Chapter 3: Empirics / Calibration (11ยถ) > **ํ†ค:** ์—ฌ๊ธฐ์„œ๋Š” โ€œ๊ฐ•ํ•œ ์ธ๊ณผ์ถ”๋ก โ€์ด ์•„๋‹ˆ๋ผ, Paper U & C์—์„œ ๋‚˜์˜จ ์‹ค์ œ ํŒจํ„ด๊ณผ Promise Vendor ์ด๋ก ์ด **์ •ํ•ฉ์ ์œผ๋กœ ๋งž๋ฌผ๋ฆฌ๋Š”์ง€ ๋ณด์—ฌ์ฃผ๋Š” ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜/consistency check**์ž„์„ ๋ช…์‹œ. :contentReference[oaicite:5]{index=5} | ยถ | ๋‚ด์šฉ | ์‚ฐ์ถœ๋ฌผ | |:-:|:--|:--| | 17 | **Context:** Paper C์˜ 123,902๊ฐœ ํŒจ๋„์—์„œ **Mobility vs Software**(sector_fe) ์„œ๋ธŒ์ƒ˜ํ”Œ์„ ์ถ”์ถœํ•˜์—ฌ, deep-tech๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ Cแตค ํ™˜๊ฒฝ์ž„์„ ๋ณด์—ฌ์คŒ (๋‚ฎ์€ ์ƒ์กด/์„ฑ์žฅ, ๋†’์€ ์ž๋ณธ์ง‘์•ฝ) | | | 18 | **Sample:** TransportationยทHardwareยทQuantum ๊ด€๋ จ ํ‚ค์›Œ๋“œ/sector๋ฅผ ์ถ”์ถœํ•œ deep-tech ์„œ๋ธŒ์ƒ˜ํ”Œ (N โ‰ˆ 4k)์™€ ๋น„๊ต๊ตฐ ์†Œํ”„ํŠธ์›จ์–ด ์„œ๋ธŒ์ƒ˜ํ”Œ (N, ๋น„์œจ ๋ช…์‹œ) | ๐Ÿ—„๏ธ Table 1: Sample by subsector (AV, EV, Fleet SaaS ๋“ฑ) | | 19 | **Outcomes (DV):** ์„ฑ์žฅ๋น„์œจ Y = T/E, ํ›„์†์ž๊ธˆ ๋„๋‹ฌ ์—ฌ๋ถ€(Series B+, L>0) โ€“ Paper C ์ •์˜ ์žฌ์‚ฌ์šฉ | | | 20 | **Predictors (IV):** (i) Sโ‚‚: Paper U์˜ V์—์„œ Sโ‚‚ = 1 - V๋กœ ๋ณ€ํ™˜, (ii) Flexibility proxy: |ฮ”V| quartile, (iii) sector/region๋ณ„ ๊ทœ์ œยท๊ธฐ์ˆ  ๋ถˆํ™•์‹ค์„ฑ proxy๋ฅผ ํ†ตํ•ด CR_high vs CR_low ๊ทธ๋ฃน ์ •์˜ | ๐Ÿ—„๏ธ Table 2: Variable construction & proxies | | 21 | **Cost Calibration:** |ฮ”V| quartile ๊ฐ„ 2.7ร— ์„ฑ์žฅ ๊ฒฉ์ฐจ๋ฅผ ๊ธฐ์ค€์œผ๋กœ, Cแตค/Cโ‚’์˜ ํ•ฉ๋ฆฌ์  ๋ฒ”์œ„๋ฅผ ์—ญ์‚ฐํ•˜๊ฑฐ๋‚˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋ณ„ CR grid ์ œ์‹œ (์ •ํ™• ์ˆ˜์น˜๋ณด๋‹ค๋Š” โ€œhigh vs lowโ€ ๊ตฌํš) | | | 22 | **Descriptives:** subsector๋ณ„ (AV, Fleet SaaS, EV ์ œ์กฐ ๋“ฑ) Sโ‚‚, |ฮ”V|, Y ๋ถ„ํฌ๋ฅผ ์š”์•ฝํ•˜์—ฌ, AV/๋”ฅํ…Œํฌ์—์„œ โ€œ๋†’์€ CR + ๋‚ฎ์€ ์ƒ์กด๋ฅ โ€ ํŒจํ„ด์ด ๋‚˜ํƒ€๋‚จ์„ ์„œ์ˆ  | ๐Ÿ—„๏ธ Table 3: Descriptive stats by subsector | | 23 | **Calibration Exercise:** AV (๊ณ  CR) vs Fleet SaaS (์ € CR) ์Œ์„ ์„ ํƒ, ๊ฐ์— ๋Œ€ํ•ด ์ด๋ก ์  k* ๊ตฌ๊ฐ„(k* โ‰ˆ 1-2 vs 4-5 ๋“ฑ)์„ ๋„์‹์ ์œผ๋กœ ์ œ์‹œํ•˜๊ณ , ์‹ค์ œ ์•ฝ์† ํ…์ŠคํŠธ์—์„œ ์˜ต์…˜ ์ˆ˜ proxy(๋‹ค์ค‘ use-case, ๋‹ค์ค‘ ๊ธฐ์ˆ  ์Šคํƒ ์–ธ๊ธ‰ ๋“ฑ)๋ฅผ ์„ธ์–ด alignment ์—ฌ๋ถ€ ๋น„๊ต | ๐Ÿ–ผ๏ธ Fig 3: k* vs Observed โ€œk-proxyโ€ across subsectors | | 24 | **Consistency Check 1:** โ€œ์ด๋ก ์ƒ k*์— ๊ทผ์ ‘ํ•œ ์ „๋žตโ€(์˜ˆ: ๊ณ  CR+๋‹ค์ค‘์˜ต์…˜, ์ € CR+์ง‘์ค‘)์„ ํƒํ•œ ๋ฒค์ฒ˜๋“ค์ด Y ๋ฐ Series B+ ๋„๋‹ฌ์—์„œ ๋” ๋†’์€ ์„ฑ๊ณผ๋ฅผ ๋ณด์ด๋Š”์ง€, ๋กœ์ง€์Šคํ‹ฑ/ํšŒ๊ท€๋กœ **์ •์„ฑ์ ** ํŒจํ„ด ๋ณด๊ณ  (์ •๋Ÿ‰ํšจ๊ณผ ํฌ๊ธฐ๋Š” ๋ณด์ˆ˜์ ์œผ๋กœ ํ•ด์„) | ๐Ÿ—„๏ธ Table 4: Alignment dummy โ†’ outcomes (no causal claim) | | 25 | **Consistency Check 2 (Murky Middle):** Sโ‚‚ โˆˆ [0.3, 0.7] & ํˆฌ์ž์ž ํ˜ผํ•ฉ proxy(๋ผ์šด๋“œ์— Analystํ˜•/Believerํ˜• VC๊ฐ€ ํ•จ๊ป˜ ๋“ค์–ด์˜จ ์ผ€์ด์Šค)์—์„œ **ํˆฌ์ž ๊ทœ๋ชจ์™€ ํ›„์†ํˆฌ์ž ํ™•๋ฅ ์ด ๋ชจ๋‘ ๋‚ฎ์€ ์˜์—ญ**์ด ๋‚˜ํƒ€๋‚˜๋Š”์ง€ ํƒ์ƒ‰ | ๐Ÿ–ผ๏ธ Fig 4: Investment intensity over Sโ‚‚, highlighting โ€œno-investment zoneโ€ band | | 26 | **Interpretation:** ์œ„ ํŒจํ„ด๋“ค์„ ํ†ตํ•ด, (i) deep-tech์—์„  Cแตค๊ฐ€ ์šฐ์„ธํ•œ CR-high regime์ž„, (ii) CR-high regime์—์„œ ๋‹ค์ค‘์˜ต์…˜ ์ „๋žต์ด ๋” ํ”ํ•˜๊ณ  ์„ฑ๊ณผ๋„ ๋” ์ข‹๋‹ค๋Š” ์ •ํ•ฉ์„ฑ, (iii) Sโ‚‚ โ‰ˆ 0.5 ์˜์—ญ์—์„œ ํˆฌ์ž์™€ ์˜ต์…˜ ๋ชจ๋‘ ์œ„์ถ•๋˜๋Š” ํ˜„์ƒ์ด, Promise Vendor ์ด๋ก ๊ณผ ๋ถ€ํ•ฉํ•จ์„ ๋…ผ์˜ | | | 27 | **Robustness:** Sโ‚‚ ์ธก์ •์น˜ ๋Œ€์•ˆ(Paper U์˜ ๋‹ค๋ฅธ V ์Šค์ผ€์ผ), sector definition ๋ณ€ํ™”, ์˜ต์…˜ proxy ์ •์˜(k-proxy alternative)๋ฅผ ๋ฐ”๊ฟ”๋„ ์ •์„ฑ์  ๊ฒฐ๋ก ์ด ์œ ์ง€๋˜๋Š”์ง€ ๋ณด๊ณ  | | --- ### Chapter 4: Discussion (5ยถ) | ยถ | ๋‚ด์šฉ | |:-:|:--| | 28 | **Link to Paper U:** V๊ฐ€ Sโ‚‚๋กœ ๋ณ€ํ™˜๋˜๋ฉด์„œ Analyst/Believer ์ฑ„๋„ ์„ ํƒ์„ ๊ฒฐ์ •ํ•˜๊ณ , ๊ทน๋‹จ(Vโ‰ˆ0 ๋˜๋Š” 1)์—์„œ๋Š” ์ผ๊ด€๋œ k*๊ฐ€ ์กด์žฌํ•˜๋Š” ๋ฐ˜๋ฉด, Vโ‰ˆ0.5์—์„œ๋Š” ์ฑ„๋„/ํˆฌ์ž์ž ํ˜ผ์„ ์œผ๋กœ k*๊ฐ€ ๋ถ•๊ดด๋จ์„ ์—ฐ๊ฒฐ (U์˜ U-shape trough โ†” N์˜ k* ๋น„์กด์žฌ) :contentReference[oaicite:6]{index=6} | | 29 | **Link to Paper C:** Paper C์—์„œ ๊ด€์ธกํ•œ 2.7ร— flexibility gap๊ณผ ฯ(Y, |ฮ”V|)=0.159***๋ฅผ Cแตค์˜ ๊ฒฝํ—˜์  lower bound๋กœ ํ•ด์„ํ•˜๊ณ , โ€œ์ž๋ณธ์ด ์˜ต์…˜์„ ํŒŒ๊ดดํ•œ๋‹คโ€๋Š” ๊ฒฐ๊ณผ๋ฅผ Cแตค๊ฐ€ ํฐ regime์˜ ํŠน์ง•์œผ๋กœ ํ†ตํ•ฉ | :contentReference[oaicite:7]{index=7} | | 30 | **Practical: Rational FOMO:** Believer-type ํˆฌ์ž์ž์™€ ์ฐฝ์—…์ž์˜ โ€˜๋ถˆ์•ˆ(FOMO)โ€™์„ ๋น„ํ•ฉ๋ฆฌ์  ๊ฐ์ •์ด ์•„๋‹ˆ๋ผ, **Cแตค๊ฐ€ ํฐ ํ™˜๊ฒฝ์—์„œ k๋ฅผ ๋†’์ด๋ ค๋Š” ๋ฒ ์ด์ง€์•ˆ ์‹ ํ˜ธ**๋กœ ์žฌํ•ด์„; ๋ฐ˜๋Œ€๋กœ Analyst-type์˜ โ€œprecision anxietyโ€๋Š” Cโ‚’๊ฐ€ ํฐ ํ™˜๊ฒฝ์—์„œ k๋ฅผ ์ค„์ด๋ ค๋Š” ์‹ ํ˜ธ๋กœ ํ•ด์„ | | 31 | **Limitations:** (i) k ์ž์ฒด๋ฅผ ์ง์ ‘ ๊ด€์ธกํ•˜์ง€ ๋ชปํ•ด proxy์— ์˜์กด, (ii) Cแตค/Cโ‚’๋ฅผ ์ •ํ™•ํžˆ ์‹๋ณ„ํ•˜๊ธฐ๋ณด๋‹ค ๊ตฌ๊ฐ„/์‹œ๋‚˜๋ฆฌ์˜ค ๋ถ„์„์— ๋จธ๋ฌด๋ฆ„, (iii) Murky Middle์˜ k* ๋น„์กด์žฌ๋Š” ์ด๋ก ยท์‹œ๋ฎฌ๋ ˆ์…˜ ๊ฒฐ๊ณผ์ด๋ฉฐ, ๋ฐ์ดํ„ฐ๋Š” ์ •ํ•ฉ์„ฑ ์ˆ˜์ค€์—์„œ๋งŒ ์ง€์ง€ํ•จ์„ ๋ช…ํ™•ํžˆ ์ธ์ • | | 32 | **Conclusion:** "In deep-tech venturing, the key question is not 'Should I focus?' but 'What is my CR?' โ€” and in the Murky Middle where investor beliefs diverge, there may be **no stable k***, implying founders must choose a side rather than remain in ambiguous specificity." | --- ## ๐Ÿ”— Three-Paper Integration (์ •๋ฆฌ ๋ฒ„์ „) ```text โœŒ๏ธU: V โ†’ Sโ‚‚ (Specificity) โ†’ Investor Channel (Analyst vs Believer) โ†“ ๐ŸฆพC: E โ†’ AOC(V) โ†’ C (Commitment Cost), calibrated via ฯ(Y, |ฮ”V|)=0.159*** and a 2.7ร— flexibility gap โ†“ ๐ŸคนN: (Sโ‚‚, Cแตค, Cโ‚’) โ†’ CR = Cแตค/(Cแตค + Cโ‚’) โ†’ k* = F_Dโปยน(CR) โ†“ If Sโ‚‚ โ‰ˆ 0.5 & mixed investors: k* UNDEFINED โ†’ No-Investment Zone ---- # Paper N: The Promise Vendor ## Table of Contents with Abstract, Figures, Tables **Source of Truth:** `[[๐Ÿ“ขBULLETIN]]` **Registry:** `[[๐Ÿ—„๏ธREGISTRY]]` --- ## ๐Ÿ“œ ABSTRACT How should ventures balance FOMO (fear of missing out) with the need for focus? Lean Startup advocates "Build-Measure-Learn" with a single product ($k=1$), but in deep-tech environments where iteration costs are prohibitive ($C_u \gg C_o$), this prescription becomes fatal. We introduce the **Promise Vendor Model** by adapting the Newsvendor framework to information economics. Just as traditional vendors optimize inventory against uncertain demand, founders should optimize their **portfolio of strategic options** ($k^*$) against uncertain market evolution: $k^* = F^{-1}(CR), \quad CR = \frac{C_u}{C_u + C_o}$ Where $C_u$ is the cost of under-commitment (missed opportunities) and $C_o$ is the cost of over-commitment (wasted resources). Analyzing the mobility sector, we show that AV ventures (high CR โ‰ˆ 0.9) optimally maintain $k^* = 4-5$ options, while Fleet Software ventures (low CR โ‰ˆ 0.3) should focus on $k^* = 1-2$. The "Murky Middle" (CR โ‰ˆ 0.5) has no stable equilibriumโ€”ventures attempting mixture strategies satisfy neither Analyst nor Believer investors. Notably, Transportation ventures show an even stronger flexibility-growth relationship ($\rho = +0.236$) than the overall sample. **Keywords:** Promise Vendor, Newsvendor Model, Critical Ratio, Option Portfolio, FOMO Dilemma --- ## ๐Ÿ“‘ TABLE OF CONTENTS ### Section 1: Introduction (ยถ75-81) โ†’ File: `[[section1(n)]]` | ยถ | Role | First Sentence | |:-:|:-----|:---------------| | 75 | ๐Ÿ“ฟ ๋ณต์Œ | ๋ฆฐ ์Šคํƒ€ํŠธ์—…: Build-Measure-Learn์œผ๋กœ k=1 ๋น ๋ฅด๊ฒŒ ๋ฐ˜๋ณต. | | 76 | ๐Ÿงฉ ํผ์ฆ | ๋”ฅํ…Œํฌ์—์„œ๋Š” ๋ฐ˜๋ณต ๋น„์šฉ์ด ์น˜๋ช…์  (Cแตค >> Cโ‚’). | | 77 | ๐Ÿ˜ฎ RQ | ๋ฐ˜๋ณต ๋ถˆ๊ฐ€๋Šฅ ์‹œ, ๋ถˆํ™•์‹ค์„ฑ ๋Œ€์ฒ˜ ์ „๋žต์€? | | 78 | ๐Ÿ”Ž ๋ Œ์ฆˆ | Newsvendor ๋ชจ๋ธ์˜ ์ •๋ณด์žฌ ์ ์šฉ: Promise Vendor. | | 79 | ๐Ÿ˜† ํ•ด๋ฒ• | ์ตœ์  ์ „๋žต = CR์— ๋น„๋ก€ํ•˜๋Š” k* ํฌํŠธํด๋ฆฌ์˜ค. | | 80 | ๐Ÿ—บ๏ธ ์ธ์ ‘ | McGrath (1997)์™€์˜ ์ฐจ๋ณ„์ . | | 81 | ๐Ÿ—„๏ธ ๋กœ๋“œ๋งต | 2์ ˆ ๋ชจ๋ธ, 3์ ˆ ๊ฒ€์ฆ, 4์ ˆ ์ „๋žต. | ### Section 2: Theory (ยถ82-90) โ†’ File: `[[section2(n)]]` | ยถ | Role | First Sentence | Asset | |:-:|:-----|:---------------|:------| | 82 | ๋ฌธํ—Œ: ๋‰ด์Šค๋ฒค๋” | Arrow et al. (1951) โ€” ์ˆ˜์š” ๋ถˆํ™•์‹ค์„ฑ ํ•˜ ์ตœ์  ์žฌ๊ณ . | | | 83 | ๋ฌธํ—Œ: ์ •๋ณด์žฌ | Shapiro & Varian (1999) โ€” ๋ฒ„์ „๋‹. | | | 84 | ๋ฌธํ—Œ: ํ”ผ๋ฒ— vs ํฌํŠธํด๋ฆฌ์˜ค | ์ˆœ์ฐจ์  vs ๋ณ‘๋ ฌ์  ํƒ์ƒ‰. | | | 85 | ๊ฐญ | k=1 (๋ฆฐ) vs k=โˆž (๋Œ€๊ธฐ์—…) ์ด๋ถ„๋ฒ•์˜ ํ•œ๊ณ„. | | | 86 | ๋ฉ”์ปค๋‹ˆ์ฆ˜: ๊ณผ์†Œ/๊ณผ์ž‰ | Cแตค (FOMO) vs Cโ‚’ (Burn). | | | 87 | ๋ฉ”์ปค๋‹ˆ์ฆ˜: CR | Critical Ratio = Cแตค / (Cแตค + Cโ‚’). | | | 88 | ๊ณ„๋ณด: Arrow | k* = Fโปยน(CR) ๋ณ€ํ™˜. | | | 89 | ๋ชจ๋ธ | ฯ€(k) = Pยทmin(k,D) - Cยทk ์ตœ์ ํ™”. | `[[๐Ÿ–ผ๏ธN_S2_newsvendor]]` | | 90 | ๊ฐ€์„ค | Hโ‚€: k*=1 vs Hโ‚: k*>1 (CR ๋†’์„ ๋•Œ). | | ### Section 3: Empirics (ยถ91-101) โ†’ File: `[[section3(n)]]` | ยถ | Role | First Sentence | Asset | |:-:|:-----|:---------------|:------| | 91 | ๋งฅ๋ฝ | ๋ชจ๋นŒ๋ฆฌํ‹ฐ ์„นํ„ฐ: AV vs Fleet ๋น„๊ต. | | | 92 | ํ‘œ๋ณธ | AV(Waymo, Zoox) vs Fleet(Samsara, Motive). | | | 93 | ์ธก์ •: CR | AV: CRโ‰ˆ0.9 (์Šน์ž๋…์‹), Fleet: CRโ‰ˆ0.3. | `[[๐Ÿ—„๏ธN_S3_cr]]` | | 94 | ์ธก์ •: k | ๋™์‹œ ๊ฐœ๋ฐœ ๊ธฐ์ˆ  ๋ชจ๋“ˆ ์ˆ˜. | | | 95 | AV ๋ถ„์„ | AV kํ‰๊ท =5.2 โ†’ ๋†’์€ CR๊ณผ ์ผ์น˜. | | | 96 | Fleet ๋ถ„์„ | Fleet kํ‰๊ท =1.3 โ†’ ๋‚ฎ์€ CR๊ณผ ์ผ์น˜. | `[[๐Ÿ–ผ๏ธN_S3_murky]]` | | 97 | ์„ฑ๊ณผ ๋ถ„์„ | Starsky (k=1) ์‹คํŒจ, ๊ณผ๋‹ค ์˜ต์…˜๋„ ์‹คํŒจ. | | | 98 | ๋ชจ๋ธ ์ ํ•ฉ๋„ | ๊ด€์ฐฐ k*์™€ ์˜ˆ์ธก k* ๊ฐ„ **90%+ ์ƒ๊ด€**. | | | 99 | ๋ฐ˜์‚ฌ์‹ค์  | AV๊ฐ€ k=1 ๋”ฐ๋ž๋‹ค๋ฉด ์ƒ์กด์œจ 80% ๊ฐ์†Œ. | | | 100 | Transportation | **ฯ(Y, \|ฮ”V\|) = +0.236*** โ€” ์œ ์—ฐ์„ฑ ํšจ๊ณผ ๋” ๊ฐ•ํ•จ. | | | 101 | ๊ฒฐ๋ก  | ์ตœ์  k*๋Š” CR์— ๋”ฐ๋ผ ์œ ๋™์ . | | ### Section 4: Discussion (ยถ102-106) โ†’ File: `[[section4(n)]]` | ยถ | Role | First Sentence | |:-:|:-----|:---------------| | 102 | ๊ณตํ—Œ 1 | ๋ฆฐ ์Šคํƒ€ํŠธ์—… ํ•œ๊ณ„ ์ฆ๋ช…: Cแตค >> Cโ‚’๋ฉด "๋น ๋ฅธ ์‹คํŒจ" = ์‹คํŒจ. | | 103 | ๊ณตํ—Œ 2 | Newsvendor์˜ ์ „๋žต ๊ฒฝ์˜ ๋„์ž…: ์ •๋Ÿ‰์  ๋ถˆํ™•์‹ค์„ฑ ๊ด€๋ฆฌ. | | 104 | ๊ณตํ—Œ 3 | ์ „๋žต์  ๋ชจํ˜ธ์„ฑ = ๊ณ ๋„์˜ **์˜ต์…˜ ๊ด€๋ฆฌ ์—ญ๋Ÿ‰**. | | 105 | ํ•œ๊ณ„ | CR ์ •ํ™• ์ธก์ •์˜ ์–ด๋ ค์›€. | | 106 | ๊ฒฐ๋ก  | ๋”ฅํ…Œํฌ ์ฐฝ์—…์ž๋Š” **Promise Vendor**๊ฐ€ ๋˜์–ด์•ผ. | --- ## ๐Ÿ–ผ๏ธ LIST OF FIGURES | # | Module | Caption | Page | |:-:|:-------|:--------|:----:| | N.1 | `[[๐Ÿ–ผ๏ธN_S2_newsvendor]]` | The Promise Vendor Model โ€” Optimal Option Count | TBD | | N.2 | `[[๐Ÿ–ผ๏ธN_S3_murky]]` | The Murky Middle Zone โ€” No Equilibrium | TBD | --- ## ๐Ÿ—„๏ธ LIST OF TABLES | # | Module | Caption | Page | |:-:|:-------|:--------|:----:| | N.1 | `[[๐Ÿ—„๏ธN_S3_cr]]` | Critical Ratio by Industry | TBD | --- ## ๐Ÿ“Š KEY NUMBERS (from [[๐Ÿ“ขBULLETIN]]) | Metric | Value | |:-------|:------| | AV optimal k* | 4-5 | | Fleet optimal k* | 1-2 | | AV CR | โ‰ˆ 0.9 | | Fleet CR | โ‰ˆ 0.3 | | Transportation ฯ(Y, \|ฮ”V\|) | **+0.236*** | | Model fit | rยฒ > 0.90 | --- ## ๐Ÿ“ THE PROMISE VENDOR FORMULA $k^* = F^{-1}\left(\frac{C_u}{C_u + C_o}\right) = F^{-1}(CR)$ **Where:** - $k^*$ = Optimal number of strategic options - $C_u$ = Under-commitment cost (FOMO) - $C_o$ = Over-commitment cost (Burn) - $CR$ = Critical Ratio - $F$ = CDF of demand distribution **Implications:** | CR | Industry Type | Optimal k* | Strategy | |:--:|:--------------|:----------:|:---------| | 0.3 | Software | 1-2 | Focus | | 0.5 | Mixed | Unstable | Avoid | | 0.9 | Deep-tech | 4-5 | Portfolio | --- ## ๐Ÿ”— CROSS-PAPER LINKS | To Paper | Connection | |:---------|:-----------| | โ† U | V determines investor type distribution D | | โ† C | AOC provides C and F measurements | --- *Paper N managed by ๐ŸŸ G + ๐ŸŸขJ* *Verified by ๐Ÿ”ดK*