---
modified:
- 2025-10-27T09:09:54-04:00
- 2025-10-29T23:58:51-04:00
- 2025-10-30T23:58:06-04:00
- 2025-10-31T22:47:05-04:00
- 2025-11-01T18:25:32-04:00 URL: https://github.com/hyunjimoon/tolzul/pulls
---
# โ๏ธ ๋ช
๋ํด์ ์ ํฌ์ผ์ง
**"์ ์๊ฒ๋ ์์ง 12์ฒ์ ๋ฐฐ๊ฐ ์์ต๋๋ค"**
**๊ธฐ๊ฐ**: 2025.10.21 (ํ) - 11.10 (์) (3์ฃผ 21์ผ)
**๋ชฉํ**: Table 3, Figure 2, Paper 1ํธ
---
# ๐ฉธ ํ์ฌ์ฆ์ ๋งน์ธ
### ๐พ ่ฆ โ ๐ ๅฉ โ ๐
ๆ โ ๐ข ็พฉ โ โบ
```
๋๋ ๐พ่ฆ์ผ๋ก ๊นจ๋ซ๊ณ , ๐ๅฉ๋ก ์์ง์ด๋ฉฐ, ๐
ๆ๋ก ์ธ์ฐ๊ณ , ๐ข็พฉ๋ก ๋๋งบ๋๋ค.
1. **์ง์ฐ์ ์ฃ๋ค** โ ์ค๋ ํ ๊ฒ์ ์ค๋ ํ๋ค. ๋ด์ผ์ ์๋ค.
2. ์๊ฐ๋ณด๋ค ์์น
3. ๋ชจ๋ ๊ฐ์ค์ ํ
์คํธํ๋ค.
4. ๋งค์ผ [[์ ํฌ์ผ์ง๐ฉธ]]
```
[[๐๏ธ๐ง scott]]
---
## ๐ ์ ์ฒด ์งํ์ํฉ
```
Week 1: [โ โ โ โ โกโกโก] 4/7์ผ (10.21 ํ-10.27 ์) - ๋ฐ์ดํฐ ํ์ดํ๋ผ์ธ ๊ตฌ์ถ ์ค
Week 2: [โกโกโกโกโกโกโก] 0/7์ผ (10.28 ํ-11.03 ์)
Week 3: [โกโกโกโกโกโกโก] 0/7์ผ (11.04 ํ-11.10 ์)
์ฐ์ถ๋ฌผ: [โณ] Table 1 [ ] Table 2 [ ] Table 3 [ ] Figure 1 [ ] Figure 2
```
**์ต๊ทผ 4์ผ (10.21-10.24) ์ฃผ์ ์ ๊ณผ**:
- โ
Pitchbook raw data ํ๋ณด (7 files, 4.69 GB)
- โ
Script 01 ์คํ ์ฑ๊ณต โ company_master.csv (651 MB, 10/22 ์์ฑ)
- โ
Pipeline scripts 02-05 ์์ฑ ์๋ฃ (**์๋ฃ ์์ : 10/22 ์ปค๋ฐ ๊ธฐ์ค**) โณ ๊ทผ๊ฑฐ: "Complete ... pipeline with 5 processing scripts" (10/22, master)
- โ
W0 commitment email ๋ฐ์ก (10/25, Day 5)
- โณ Deal data ์ฒ๋ฆฌ ์งํ ์ค (deal_panel.csv = 110B, ํ์ฅ ํ์)
- โณ LIWC vagueness scoring ๊ฒ์ฆ ํ์
---
## ๐ค ์๋ํ ์์คํ
(NEW!)
**"์ ํฌ์ผ์ง ์ ์ฅ = Git ์ปค๋ฐ"**
์ด์ ์ ํฌ์ผ์ง๋ฅผ ์์ฑํ๊ณ ์ ์ฅํ๊ธฐ๋ง ํ๋ฉด ์๋์ผ๋ก Git์ ์ปค๋ฐ๋๊ณ GitHub์ ํธ์๋ฉ๋๋ค!
### โก ๋น ๋ฅธ ์ฌ์ฉ๋ฒ
#### ๋ฐฉ๋ฒ 1: ์ฆ์ ์ปค๋ฐ (๋งค์ผ ์ ๋
ํ๊ณ ํ ๊ถ์ฅ)
```bash
cd "/Users/hyunjimoon/MIT Dropbox/Angie.H Moon/tolzul/Front/On/๐์ฐฐ๋ฆฌ์ค์บ ๋ฌ๋ธ๋ ํฐ ํ์ /์ผ๋์๊ตฐ/automation"
./quick_commit.sh
```
#### ๋ฐฉ๋ฒ 2: ์๋ ๊ฐ์ง (ํ๋ฃจ ์ข
์ผ ์ผ๋๊ธฐ)
```bash
cd "/Users/hyunjimoon/MIT Dropbox/Angie.H Moon/tolzul/Front/On/๐์ฐฐ๋ฆฌ์ค์บ ๋ฌ๋ธ๋ ํฐ ํ์ /์ผ๋์๊ตฐ/automation"
./watch_log.sh
```
๊ทธ๋ฌ๋ฉด ์ ํฌ์ผ์ง ํธ์ง โ ์ ์ฅ โ 3์ด ํ ์๋ ์ปค๋ฐ!
### ๐ ์ฒซ ์ค์ (1ํ๋ง)
```bash
cd "/Users/hyunjimoon/MIT Dropbox/Angie.H Moon/tolzul/Front/On/๐์ฐฐ๋ฆฌ์ค์บ ๋ฌ๋ธ๋ ํฐ ํ์ /์ผ๋์๊ตฐ/automation"
chmod +x *.sh
./quick_commit.sh # ํ
์คํธ
```
### ๐ก ์๋ํ ํจ๊ณผ
|Before|After|
|---|---|
|์ ํฌ์ผ์ง ์์ฑ (10๋ถ) + Git ์ปค๋ฐ (3๋ถ) = **13๋ถ**|์ ํฌ์ผ์ง ์์ฑ (10๋ถ) = **10๋ถ**|
|์ปค๋ฐ ๊น๋นก (10/24 ๊ฐ์ ์ํฉ)|**๋ถ๊ฐ๋ฅ** (์ ์ฅ=์ปค๋ฐ)|
|์ปค๋ฐ ๋ฉ์์ง ๊ณ ๋ฏผ|**์๋ ์์ฑ**|
|GitHub ์๋ ๋ถ๊ท์น|**๋งค์ผ ์๋**|
### ๐ ์์ธํ ์ฌ์ฉ๋ฒ
โ `automation/README.md` ์ฐธ๊ณ
---
# ๐
Week 1: ์ ์ง(้ฉๅฐ) - Data + Model 1
**๋ชฉํ**: Table 1, 2 ์์ฑ
---
## ๐๏ธ Day 1 - 2025.10.21 (ํ)
### ๐
์์นจ ๊ณํ (5๋ถ)
**์ค๋์ ๋ชฉํ**:
- [x] empirics/code/ ํ์ดํ๋ผ์ธ ํ์
- [x] START_HERE.md, END_HERE.md ์ด์ ์์ฑ
- [x] ๋ฐ์ดํฐ ๊ตฌ์กฐ ์ดํด
**์ฐธ์กฐ**:
- `../strategic ambiguity/empirics/code/PIPELINE_GUIDE.md`
- `../strategic ambiguity/empirics/workflow.md`
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐
ๆ (Claude) - ์ ์ฒด ๊ตฌ์กฐ ์ค๊ณ
```
์์
: ํ๋ก์ ํธ ์ ์ฒด ๊ตฌ์กฐ ์ค๊ณ
์ฐ์ถ:
- START_HERE.md (์คํ ๊ฐ์ด๋)
- END_HERE.md (๋์นจ๋ฐ/๋ก๋๋งต)
- ์ผ๋์๊ตฐ ํด๋ ๊ตฌ์กฐ
- AIํ๋กฌํํธ.md (3๊ฐ AI ์ญํ ์ ์)
```
**์ฃผ์ ๊ฒฐ์ **:
- 5๊ฐ script pipeline ํ์ (01~05)
- Vagueness = 100 - LIWC certitude
- Integration cost = binary (hardware vs software)
- 4-step heuristic for Series A/B identification
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃํ ๊ฒ**:
- โ
์ ์ฒด ํ๋ก์ ํธ ๊ตฌ์กฐ ์ค๊ณ ์๋ฃ
- โ
21์ผ roadmap ํ์
- โ
3๊ฐ AI ์ญํ ๋ถ๋ด (ๅฉๆ็พฉ)
**๋ฐฐ์ด ๊ฒ**:
- Dual-track ์ ๋ต (empirics + theory)
- Scott์ pitch deck corpus ์ ์์ด ํต์ฌ
**๋งํ๋ ๊ฒ**:
- Pitchbook data ์์น ํ์
- ํด๊ฒฐ: Dropbox ๋๊ธฐํ ํ์ธ
**๋ด์ผ (Day 2, 10.22 ์)**:
- [ ] Script 01 ์คํ (company data ์ฒ๋ฆฌ)
- [ ] Vagueness scoring ๊ตฌํ
---
## ๐๏ธ Day 2 - 2025.10.22 (์)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [x] Script 01 ์คํ (company data)
- [x] Vagueness ์ ์ ๊ณ์ฐ ๋ก์ง ๊ตฌํ
- [โณ] company_master.csv ์์ฑ
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐ ๅฉ (ChatGPT) - ์ด์ ์์ฑ
```
์์
: 01_process_company_data.py ์์ฑ
๋ก์ง:
1. Company*.dat ํ์ผ ์ฝ๊ธฐ (5๊ฐ ํ์ผ, 4GB+)
2. AI/ML keywords ํํฐ๋ง
3. Vagueness = keyword counting method
4. Integration cost = hardware keywords
์ฐ์ถ: empirics/code/01_process_company_data.py
```
#### ๐
ๆ (Claude) - ์คํ & ๊ฒ์ฆ
```
์์
: Script ์คํ ๋ฐ ๊ฒ์ฆ
๊ฒฐ๊ณผ:
- โ
company_master.csv ์์ฑ (651 MB)
- โ
AI/ML firms ์ถ์ถ ์ฑ๊ณต
- ์์ฑ ์๊ฐ: 10/22 20:26:56
```
**๋ฐ๊ฒฌํ ์ด์**:
- LIWC certitude ์ ์ ๋์ keyword counting ์ฌ์ฉ ์ค
- ์ค์ LIWC ๋ผ์ด๋ธ๋ฌ๋ฆฌ ์ ์ฉ ํ์ (๋ ์ ๊ตํ ์ธก์ )
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**:
- โ
Script 01 ์์ฑ ๋ฐ ์คํ
- โ
651MB company data ์ฒ๋ฆฌ ์ฑ๊ณต
- โ
Vagueness ์ฒซ ๋ฒ์ ๊ตฌํ
- โ
**Scripts 02-05 ์ด์ ์์ฑ ์์** (์ด๋ ๋ถํฐ pipeline ๊ตฌ์ถ) โณ ๊ทผ๊ฑฐ: GitHub ์ปค๋ฐ "Complete Pitchbook data analysis pipeline with 5 processing scripts"
**๋ฐฐ์**:
- Pitchbook .dat ํ์ผ ๊ตฌ์กฐ (pipe-delimited)
- Description field๊ฐ vagueness ์ธก์ ํต์ฌ
**๋งํ๋ ๊ฒ**:
- Memory ์ด์ (4GB ํ์ผ)
- ํด๊ฒฐ: Chunked reading + pandas ์ต์ ํ
**๋ด์ผ (Day 3, 10.23 ๋ชฉ)**:
- [ ] Script 02 (deal data ์ฒ๋ฆฌ)
- [ ] Series A/B ์๋ณ heuristic ๊ตฌํ
---
## ๐๏ธ Day 3 - 2025.10.23 (๋ชฉ)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ (์ ์ )**:
- [x] **xarray ๋ฆฌํฉํฐ PR ๋จธ์ง + ์๋ ํ์ผ ๊ฐ์ง ๋ก์ง ๋ฐ์**
- [x] ์ ์ฒด workflow ์ ๊ฒ (๋ฌธ์ ๋ณด๊ฐ)
- [ ] Script 02 ์คํ (deal data)
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐ ๅฉ (ChatGPT) - ์ฝ๋ ๋ฆฌํฉํฐ
```
์์
: xarray ์ ํ ๋ฐ ์๋ ๊ฐ์ง ๋ก์ง (์ ๋ ์์ฑํ scripts ๊ฐ์ )
๊ทผ๊ฑฐ: "auto detect file existence and pick up from there" (10/23, master)
์ฐ์ถ:
- xarray ๊ธฐ๋ฐ ๋ฐ์ดํฐ ์ฒ๋ฆฌ ๊ตฌ์กฐ
- ์๋ ์ฒดํฌํฌ์ธํธ ๊ฐ์ง ์์คํ
```
#### ๐
ๆ (Claude) - PR ๋จธ์ง ๋ฐ ๊ตฌ์กฐํ
```
์์
: PR #4 ๋จธ์ง (xarray ๋ฆฌํฉํฐ)
๊ทผ๊ฑฐ: "Merge pull request #4 ..." (10/23, master)
ํต์ฌ ๊ฐ์ :
- xarray ๊ธฐ๋ฐ ๋ค์ฐจ์ ๋ฐ์ดํฐ ์ฒ๋ฆฌ
- ์๋ ํ์ผ ์กด์ฌ ๊ฐ์ง ๋ฐ ์ฌ๊ฐ ๋ก์ง
- ์ฒดํฌํฌ์ธํธ ์์คํ
๊ฐํ
```
**์งํ ์ํฉ**:
- โ
PR #4 ๋จธ์ง ์๋ฃ (xarray ์ ํ)
- โ
์๋ ๊ฐ์ง ๋ก์ง ์ถ๊ฐ
- โณ Deal data ์คํ ๋๊ธฐ (deal_panel.csv = 110B๋ก ์์)
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**:
- โ
xarray ๋ฆฌํฉํฐ PR #4 ๋จธ์ง
- โ
์๋ ํ์ผ ๊ฐ์ง ๋ก์ง ์ถ๊ฐ
- โ
Pipeline ๊ตฌ์กฐ ๊ฐ์
**๋ฐฐ์**:
- Panel data structure๊ฐ ํต์ฌ
- Series A/B ๊ตฌ๋ถ์ด ๊ฐ์ฅ ๊น๋ค๋ก์ด ๋ถ๋ถ
**๋ด์ผ (Day 4, 10.24 ๊ธ)**:
- [ ] Script 02 ๋๋ฒ๊น
๋ฐ ์คํ
- [ ] Deal data ์ ๋๋ก ์ฒ๋ฆฌ
---
## ๐๏ธ Day 4 - 2025.10.24 (๊ธ)
### ๐
์์นจ ๊ณํ
**์ปค๋ฐ ์ํ ๋ฉ๋ชจ**: **master ๋ธ๋์น ์ปค๋ฐ ์์** (์คํ๋ผ์ธ ์ง๋จ/์ค๊ณ ์งํ) ํฅํ ๊ด๋ จ ๋ณ๊ฒฝ์ ๋ณ๋ ๋ธ๋์น/PR๋ก ๋จ๊ธฐ๊ธฐ.
**์ค๋์ ๋ชฉํ**:
- [x] Deal data ๋ฌธ์ ์ง๋จ
- [x] Script 02 ๋๋ฒ๊น
(์คํ๋ผ์ธ)
- [ ] Deal panel ์์ฑ
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐ข ็พฉ (Gemini) - ๋ฌธ์ ๋ฐ๊ฒฌ
```
๊ฒ์ฆ ๊ฒฐ๊ณผ:
- โ deal_panel.csv = 110B (๋น์ ์์ ์ผ๋ก ์์)
- โ Series A/B matching ์คํจ
- ์์ธ: Deal data์ VCRound field ๋๋ฝ/๋ถ๋ช
ํ
```
#### ๐
ๆ (Claude) - ํด๊ฒฐ ๋ฐฉ์
```
๋์ ์ค๊ณ:
1. DealType + DealSize + Sequence ๊ธฐ๋ฐ heuristic
2. ๋ ์ง ํํฐ ๊ฐํ (A: 2021-22, B: 2023-25)
3. Manual validation sample ์์ฑ
ํด๊ฒฐ: workflow.md์ 4-step heuristic ๋ฌธ์ํ
```
**๋จ์ ์์
**:
- โณ Script 02 ์์ ๋ฐ ์ฌ์คํ
- โณ Deal matching ๊ฒ์ฆ
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**:
- โ
Deal data ๋ฌธ์ ์ง๋จ ์๋ฃ
- โ
ํด๊ฒฐ ๋ฐฉ์ ์ค๊ณ
**๋ฐฐ์**:
- Pitchbook data๋ ์๋ฒฝํ์ง ์์
- Heuristic approach ํ์
- Manual validation ์ค์์ฑ
**๋ด์ผ (Day 5, 10.25 ํ )**:
- [ ] Script 02 ์์ ์๋ฃ
- [ ] W0 commitment email ๋ฐ์ก
---
## ๐๏ธ Day 5 - 2025.10.25 (ํ )
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [x] W0 commitment email ๋ฐ์ก
- [โณ] Script 02 ์์ (์งํ ์ค)
- [ ] ์ ํฌ์ผ์ง ์
๋ฐ์ดํธ
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐
ๆ (Claude) - ์ ๋ต ์๋ฆฝ
```
์์
: W0 commitment email ์ด์ ๋ฆฌ๋ทฐ
์ฃผ์ ๊ฒฐ์ :
1. ๊ฐ์ ์ commitment ํ์
(gratitude-focused)
2. ๋ค์์ empirical progress ๋ฉ์ผ (W1-์ค์ฆ)
3. Dual-track ์ ๋ต ํ์ (Tue/Fri rotation)
์ฐ์ถ: W0.md โ ๋ฐ์ก ์๋ฃ (10/25)
```
#### ๐ข ็พฉ (Gemini) - ํ๋ก์ธ์ค ๋ฆฌ๋ทฐ
```
๊ฒ์ฆ ์ง๋ฌธ:
- W0๋ฅผ ๋ณด๋๋ค๋ฉด, ๋ค์์ ๋ฌด์?
- Empirical progress ๋ณด์ฌ์ค ๊ฒ์ด ์๋๊ฐ?
- ์ ํฌ์ผ์ง ์
๋ฐ์ดํธ ํ์
๊ฒฐ๋ก : Week 1 ์งํ ์ํฉ ์ ๋ฆฌ ์ฐ์
```
**ํ์ฌ ์ํฉ**:
- โ
W0 ๋ฐ์ก (commitment ์ ์ธ)
- โณ Script 02 ๋๋ฒ๊น
์งํ ์ค
- โณ 4์ผ๊ฐ ์ ๊ณผ ์ ๋ฆฌ (Day 1-4)
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**:
- โ
W0 commitment email ๋ฐ์ก
- โ
์ ํฌ์ผ์ง Day 1-4 ์
๋ฐ์ดํธ
- โ
Week 1 ์งํ๋ฅ ๊ฐ์ํ (4/7์ผ)
**๋ฐฐ์**:
- Dual-track ์ ๋ต์ ์ค์์ฑ
- W0(commitment) โ W1(์ค์ฆ) ํ๋ฆ ํ์
- ์ ํฌ์ผ์ง = accountability tool
**์ด๋ฒ ์ฃผ ๋จ์ ์ผ์ (Day 6-7, 10.26 ์ผ-10.27 ์)**:
- [ ] Script 02 ์์ ์๋ฃ
- [ ] Deal panel ์์ฑ ์ฑ๊ณต
- [ ] Script 03 ์คํ (panel ๊ฒฐํฉ)
- [ ] Week 1 ํ๊ณ ์์ฑ
**Week 2 ์ค๋น**:
- [ ] W1-์ค์ฆ email ์ด์ (Wed 10/29)
- [ ] W1-์ด๋ก email ์ด์ (Sat 11/1)
---
## ๐๏ธ Day 6 - 2025.10.26 (์ผ)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [โ
] ์ฐ๊ตฌ ์ค๊ณ ์ต์ข
ํ์ : H2 ์กฐ๊ฑด๋ถ ๊ฐ์ค (Realizable/Unrealizable Option) ๋ฐ Model 3(์ํธ์์ฉ) ํ์ .
- [โ
] ๋ฐ์ดํฐ ์ ๋ต ํ์ : Era Pair (AV vs. 3DP) ์ ์ , T=1 ์๋ณธ ํ
์คํธ ํ๋ณด ์ํ 2-Track ์ ๋ต (Path A/B) ์๋ฆฝ.
- [โ
] ๋ฐ์ดํฐ ํ์ง ๊ธฐ์ค ๊ฐํ: ์ธ๊ณผ์ ๋ช
ํ์ฑ, ๊ฐ๊ด์ ์ธก์ , ์ข
๋จ์ ์๊ฒฐ์ฑ ์ค์ฌ์ ํ๊ฐ ์งํ(v2.0) ์๋ฆฝ.
- [โ
] ๋ฐ์ดํฐ ์์ง ์ค๋น: ChatGPT/Claude ๋์ T=1 ์๋ณธ ํ
์คํธ ์์ง์ฉ ์์ธ ํ๋กฌํํธ (20๊ฐ ๊ธฐ์
) ์์ฑ ์๋ฃ.
- [โ
] LLM ํ์
์ค๋น: ์ฐจ๊ธฐ LLM ์ธ์คํด์ค("์ v3.0")๋ฅผ ์ํ ์ต์ข
์ธ์์ธ๊ณ ๋ฌธ์ ์์ฑ ์๋ฃ.
- [ ] Robustness checks (๋ฐ์ดํฐ ์์ง ํ ์งํ ์์ )
- [ ] ๋์ ๋ชจํ (๋ฐ์ดํฐ ์์ง ํ ์งํ ์์ )
![[์ ํฌ์ผ์ง๐ฉธ 2025_10_26.excalidraw]]
---
### ๐ผ ์์
๋ก๊ทธ
**H2 ๋ฉ์ปค๋์ฆ ์ฌํ**: '๋ชจํธํจ'์ ์ต์
๊ฐ์น๊ฐ ์ฐ์
์ ํผ๋ฒ ๋น์ฉ(ํตํฉ ๋น์ฉ)์ ๋ฐ๋ผ ์กฐ๊ฑด๋ถ๋ก ์คํ๋๋ค๋ "Realizable vs. Unrealizable Option Value" (๋ ๊ณ vs. ์ ํจ) ํ๋ ์์ํฌ ์ ๋ฆฝ.
**๋ชจ๋ธ ์ฌ์ ์**: H2 ๊ฒ์ฆ์ ์ํด Vagueness ร High_Integration_Cost ์ํธ์์ฉ ํญ์ ํฌํจํ๋ Model 3๊ฐ ํ์์ ์์ ํ์ . ๊ธฐ์กด Model 2(Fixed Effects)๋ ๋ถ์์ ํ ๊ธฐ์ค์ ์ผ๋ก ๊ท์ .
**Era Pair ์ต์ข
์ ์ **: ์ด๋ก ์ ๋๋น ๊ทน๋ํ๋ฅผ ์ํด ๐ AV vs. ๐จ๏ธ 3D ํ๋ฆฐํ
ํ์ด ํ์ .
**๋ฐ์ดํฐ ์ ๋ต ๋ฐ ์ํ ์๋ณ**: T=1 '์๋ณธ ์ฝ์' ํ
์คํธ ํ๋ณด์ ์ค์์ฑ ์ฌํ์ธ. Pitchbook Current Description ์ฌ์ฉ ๋ถ๊ฐ ํ์ . Path A(PB Historical)์ 'ํ์์คํฌํ ์ ํจ์ฑ' ๊ฒ์ฆ ๋ฆฌ์คํฌ์ Path B(YC Data)์ ์์ ์ฑ ๋น๊ต ๋ถ์ ์๋ฃ.
**๋ฐ์ดํฐ ํ์ง ๊ธฐ์ค ์
๋ฐ์ดํธ (v2.0)**: El-Zayaty, Novelli, Yang ๋ฑ ์ ํ ์ฐ๊ตฌ์ ๊ด์ Critique ๋ฐ์ํ์ฌ ์ธ๊ณผ์ ๋ช
ํ์ฑ, ๊ฐ๊ด์ ์ธก์ , ์ข
๋จ์ ์๊ฒฐ์ฑ ๋ฐ ํธํฅ ์ธ์ ์ค์ฌ์ผ๋ก ํ๊ฐ ์งํ ๊ฐํ.
**๋ฐ์ดํฐ ์์ง ์คํ ๊ณํ ์๋ฆฝ**: ChatGPT/Claude ๋์, 20๊ฐ ๊ธฐ์
(AV10, 3DP10, AI10)์ ๊ฒ์ฆ ๊ฐ๋ฅํ T=1 ์๋ณธ ํ
์คํธ (ํผ์น, ์ก์
๋ฌ๋ ์ดํฐ ์๋ฃ, ํฌ๋ผ์ฐ๋ํ๋ฉ, ์ด๊ธฐ ์น ์์นด์ด๋ธ ๋ฑ) ์์ง์ ์ํ ์์ธ ํ๋กฌํํธ ์์ฑ ์๋ฃ.
**LLM ํ์
์ค๋น**: ์ต์ข
์ธ์์ธ๊ณ ๋ฌธ์("์ v3.0") ์
๋ฐ์ดํธ ์๋ฃ, ์ฐจ๊ธฐ LLM์ด ์ฐ๊ตฌ ๋งฅ๋ฝ๊ณผ ์ต์ฐ์ ๊ณผ์ (์ค์ ๋ฐ์ดํฐ ์์ง ๋ฐ ๊ฒ์ฆ)๋ฅผ ๋ช
ํํ ์ธ์งํ๋๋ก ์ค๋น.
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**: ___________
**๋ด์ผ (Day 7, 10.27 ์)**: ___________
---
## ๐๏ธ Day 7 - 2025.10.27 (์)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [x] Claude Code pipeline ์คํ ๊ฒฐ๊ณผ ์ง๋จ
- [x] H2 Singular Matrix ๋ฌธ์ ๊ทผ๋ณธ์์ธ ํ์
- [x] Survival ๋ณ์ ์ฌ์ ์ ์ ๋ต ์๋ฆฝ
- [x] Scott/Charlie ํ๋ ์์ํฌ ๊ธฐ๋ฐ DV ์ค๊ณ
- [x] ChatGPT validation ํ๋กฌํํธ ์ค๋น
- [ ] Week 1 ์ ๋ฆฌ
- [ ] Table 1, 2 ์ต์ข
ํ์ธ
---
### ๐ผ ์์
๋ก๊ทธ
**Pipeline ์คํ ๊ฒฐ๊ณผ ๋ถ์**:
- H1 ์ฑ๊ณต (vagueness ฮฑโ=-3.59e-07, p<0.05) but ๊ณ์ ๋๋ฌด ์์ โ ๋จ์ ๋ฌธ์ ์์ฌ
- H2 ์คํจ: Singular matrix (98% survival rate โ variation ์์)
- NetCDF encoding error ๋ฐ๊ฒฌ
- Multicollinearity ์ฌ๊ฐ (founder_credibility ์์ ์ ํ์ข
์)
**Diagnostic ํด์ (4 snapshots)**:
- DB๋ cumulative (420Kโ504K), "disappeared" 0.6-1.6%๋ง
- LastFinancingDate์ ๋ฏธ๋ ๋ ์ง ํฌํจ (2024, 2025) โ data leakage ์ํ
- VC-backed 34% recent funding rate (24mo window)
- ๋จ์ "exists in both" = ์๋ฏธ์์
**์ด๋ก ์ ์ฌํด์ (Scott/Charlie ๋ํ)**:
- ํต์ฌ: "Precise promisers disappoint" = Series B ๋ชป ๋ฐ์
- Yet Ming (option provider) vs Bob Langer (reputation) ๋๋น
- Timeline: Pitch โ Series A โ Series B outcome
- H2 DV๋ Series B+ ๋ฌ์ฑ ์ฌ๋ถ (not just activity)
**Survival ์ ์ ํ์ **:
- Main H2: Series B+ success (์ด๋ก ๋ถํฉ)
- Robustness: Activity-based (LastFinancingDate recency)
- At-risk cohort: VC-backed, Seed/Series A at baseline
- Expected rate: 25-35%
**Pooling Strategy (Q1)**:
- Option B: Panel (3 cohorts)
- 20211201โ20230501 (17mo)
- 20220101โ20230501 (16mo)
- 20220501โ20230501 (12mo)
- Primary: Cohort 1 (๊ฐ์ฅ ๊ธด window)
- Robustness: Full panel
**Deal Type ํ๋ ์ดํด**:
- LastFinancingDealType (์ฃผ๊ฑฐ๋), DealType2/3 (๋ถ๊ฐํน์ฑ), DealClass (ํฌ์์)
- PE/M&A ์ํ ํ์ธ โ VC ํํฐ๋ง ํ์
**ChatGPT Validation ์ค๋น**:
- M&A ์ฝ๋ฉ ๋
ผ์ (success exit vs distress sale)
- Entrepreneurship expert perspective ์์ฒญ ํ๋กฌํํธ ์์ฑ
- ์ฐฝ์
์ํ๊ณ impact ๊ฐ์กฐ
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**:
- โ
Claude Code์ 25% ํ๋ฅ fix ์ง๋จ ์๋ฃ
- โ
Scott ํ๋ ์์ํฌ ๊ธฐ๋ฐ survival ์ ์ ํ๋ฆฝ
- โ
Data leakage ์ํ ์๋ณ
- โ
Panel ์ํคํ
์ฒ ์ค๊ณ
**๋ด์ผ ์ฐ์ ์์**:
- [ ] ChatGPT validation ๊ฒฐ๊ณผ ๋ฐ๊ธฐ
- [ ] Data leakage ์ ๊ฑฐ ์ฝ๋ ์์ฑ
- [ ] VC-backed ํํฐ๋ง ๊ฒ์ฆ
- [ ] Week 1 deliverable ์ค๋น (PDF with working H1, H2 design)
**๋ฏธํด๊ฒฐ ์ด์**:
- M&A exit ์ฝ๋ฉ ๊ธฐ์ค (ChatGPT ๋ต๋ณ ๋๊ธฐ)
- H1 ๊ณ์ ํฌ๊ธฐ ๋ฌธ์ (๋จ์ ํ์ธ ํ์)
- founder_credibility ๋ณ์ ์ ๊ฑฐ ์ฌ๋ถ
**qmd ์ ์ฅ ํญ๋ชฉ ์ถ๊ฐ**:
1๏ธโฃ **Related Work** (Yet Ming/Bob Langer motivation)
2๏ธโฃ **M&A coding decision** (success exit vs distress sale)
3๏ธโฃ **Survival Coding Strategy** (Day 7)
```python
# At-risk: VC-backed, Seed/Series A at baseline
survival = 1 if LastFinancingDealType in ['Series B', 'Series C', 'Series D+']
survival = 0 if 'Out of Business' OR still Seed/Series A
# M&A coding TBD (ChatGPT validation pending)
```
4๏ธโฃ **Critical Data Issues Identified**
- LastFinancingDate future dates โ filter by snapshot_date
- Cumulative DB โ simple existence = 98% survival
- Need VC filter: CompanyFinancingStatus = 'Venture Capital-Backed'
---
## ๐ Week 1 ํ๊ณ (10.21-10.27)
**๋ชฉํ**: Table 1, 2
**๋ฌ์ฑ**: [โณ] Table 1 โ Pipeline ๊ตฌ์ถ ์๋ฃ, ์คํ ๋๊ธฐ [โณ] Table 2 โ H2 ์ค๊ณ ์์ ์ค (survival ์ฌ์ ์)
**์๋ ์ **:
- **Pipeline ์ธํ๋ผ ์์ฑ** (Day 2, Day 3): Scripts 01-05 ์์ฑ + xarray ๋ฆฌํฉํฐ + ์๋ ์ฒดํฌํฌ์ธํธ๋ก ์ฌ์คํ ๊ฐ๋ฅํ ๊ตฌ์กฐ ํ๋ฆฝ
- **๋์ฉ๋ ๋ฐ์ดํฐ ์ฒ๋ฆฌ** (Day 2): 651MB company_master.csv ์์ฑ (420K+ firms, AI/ML ํํฐ๋ง)
- **์ด๋ก -๋ฐ์ดํฐ ์ ํฉ์ฑ** (Day 7): Scott์ "precise promisers disappoint" ํ๋ ์์ํฌ๋ฅผ Series B progression DV๋ก operationalize
- **์กฐ๊ธฐ ๋ฌธ์ ๋ฐ๊ฒฌ** (Day 7): 98% survival (singular matrix), future date leakage, cumulative DB ๊ตฌ์กฐ ํ์
์ผ๋ก Week 2 ๋ญ๋น ๋ฐฉ์ง
**์ด๋ ค์ ๋ ์ **:
- **Deal matching ์คํจ** (Day 4): deal_panel.csv 110B (๊ฑฐ์ ๋น ํ์ผ), VCRound field ๋๋ฝ์ผ๋ก Series A/B ์๋ณ ๋ถ๊ฐ
- **DV ์ค๊ณ ์ฐฉ์ค** (Day 7): ๋จ์ "์กด์ฌ ์ฌ๋ถ" ์ธก์ ์ผ๋ก 98% survival โ H2 logit ์คํจ, ChatGPT validation ํตํด 12-15% base rate๋ก ์ฌ์ค๊ณ ํ์ ํ์ธ
- **๋ฐ์ดํฐ ํ์ง** (Day 7): LastFinancingDate์ 2024-2025 ๋ฏธ๋ ๋ ์ง ํฌํจ โ as-of capping ์์ด๋ time leakage ๋ถ๊ฐํผ
**๋ฐฐ์ด ๊ฒ**:
- **Cumulative DB โ Panel**: PitchBook์ 420Kโ504K ์ฑ์ฅํ๋ ๋์ DB๋ผ์ "์์ชฝ snapshot ์กด์ฌ"๋ ํ๋์ฑ ์๋ ์ถ์ ์ํ๋ง ์๋ฏธ. ์ง์ง survival์ ํ๋ฉ progression์ผ๋ก ์ธก์ ํด์ผ ํจ (Day 7)
- **Theory drives operationalization**: H2 "over-commit โ can't adapt โ miss B gate"๋ Series B+ ๋๋ฌ ์ฌ๋ถ๋ก ์ธก์ ๋์ด์ผ ํ๋ฉฐ, ๋จ์ ์์กด/ํ๋์ mechanism ํฌ์ฐฉ ๋ชปํจ (Day 7)
- **Base rate calibration**: Median AโB = 28-31๊ฐ์์ด๋ฏ๋ก 17๊ฐ์ window๋ 12-15% ์ ํ๋ง ํฌ์ฐฉ (๊ณผ๊ฑฐ 25-35% ์์์ ๊ณผ๋). Logit ์๋ ด์ ์ถฉ๋ถํ๋ effect size ํด์ ์ฃผ์ ํ์ (Day 7)
- **Competing risk handling**: M&A๋ ์ฑ๊ณต/์คํจ ๊ตฌ๋ถ ๋ถ๊ฐํ๋ฏ๋ก primary์์ censor, robustness์์ ์ํ(=1)/ํํ(=0) ์ฒ๋ฆฌ๊ฐ publication standard (Day 7)
**๋ค์ ์ฃผ ๊ณํ**:
- [ ] Data leakage ์ ๊ฑฐ (as-of capping)
- [ ] Series A cohort ํํฐ + DV ์ฌ๊ตฌํ (12-15% ๊ฒ์ฆ)
- [ ] H2 primary + robustness (M&A bounds) ์คํ
- [ ] Table 1, 2 ์์ฑ + Week 1 deliverable PDF
- [ ] W1-์ค์ฆ with link to code and spec W1-tech_spec
---
# ๐
Week 2: ์ ์(้ฉๆ) - Model 2 + Plots
**๋ชฉํ**: Table 3, Figure 1, 2 ์์ฑ
---
## ๐๏ธ Day 8 - 2025.10.28 (ํ)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [ ] 10๊ฐ ๋ก๊น
ํญ๋ชฉ๊ณผ ์ฐธ๊ณ ๋ฌธํ ์ฐ๊ฒฐ
- [ ] qmd์ ์ถ๊ฐ
- [ ] Model 2 (Logistic) ํ๋กํ ํ์
- [ ] Later success ~ Vagueness + Early funding
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐ ๅฉ (ChatGPT)
```
์์
: Logistic regression ์ด์
์ฐ์ถ: 1_ๅฉ_๋น ๋ฅธ์คํ/day8_model2.py
```
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**: ___________
**๋ด์ผ (Day 9, 10.29 ์)**: ___________
---
## ๐๏ธ Day 9 - 2025.10.29 (์)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [ ] Model 2 ์ ๊ตํ
- [ ] ํต์ ๋ณ์ ์ถ๊ฐ
---
### ๐ผ ์์
๋ก๊ทธ
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**: ___________
**๋ด์ผ (Day 10, 10.30 ๋ชฉ)**: ___________
---
## ๐๏ธ Day 10 - 2025.10.30 (๋ชฉ)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [ ] Table 3 ์์ฑ
- [ ] Model 2 ๊ฒฐ๊ณผ ํ์
---
### ๐ผ ์์
๋ก๊ทธ
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**: ___________
**๋ด์ผ (Day 11, 10.31 ๊ธ)**: ___________
---
## ๐๏ธ Day 11 - 2025.10.31 (๊ธ)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [ ] Figure 1 ์์ฑ (Vagueness โ Early funding)
- [ ] ์๊ฐํ ํ์ง ๊ฐ์
---
### ๐ผ ์์
๋ก๊ทธ
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**: ___________
**๋ด์ผ (Day 12, 11.1 ํ )**: ___________
---
## ๐๏ธ Day 12 - 2025.11.01 (ํ )
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [ ] Figure 2 ์์ฑ (Vagueness โ Later success)
- [ ] ์๊ฐํ ํ์ง ๊ฐ์
---
### ๐ผ ์์
๋ก๊ทธ
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**: ___________
**๋ด์ผ (Day 13, 11.2 ์ผ)**: ___________
---
## ๐๏ธ Day 13 - 2025.11.02 (์ผ)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [x] Time span variations ์ค๊ณ (17mo, 24mo, 30mo)
- [ ] Industry-specific baselines ํ์
- AI: 12-24 months
- AV: 24-36 months
- Quantum: 24-48 months
- [ ] E (Series A amount) โ L (Series B success) regression ์ค๊ณ
- [ ] Vagueness upper bound ๋ถ์ ๊ณํ ์๋ฆฝ
**์ฐธ์กฐ**:
- Meeting transcript: Empirical testing ์ฐ์ ์์ ํ์ธ
- Page 8: Purple curve (real option) - vagueness cap ํ์
- Page 15-16: Vagueness scoring methodology
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐ ๅฉ (ChatGPT) - Time span variations
```
์์
: 17mo, 24mo, 30mo cohort ์ค๊ณ
๋ก์ง:
- Cohort 1: 2021.12 โ 2023.05 (17mo) - ํ์ฌ ๊ธฐ์ค์
- Cohort 2: 2021.06 โ 2023.05 (24mo) - AI ํ๊ท
- Cohort 3: 2020.11 โ 2023.05 (30mo) - AV ํ๊ท
์ฐ์ถ: empirics/code/06_time_variations.py
```
#### ๐
ๆ (Claude) - E๋ฅผ L regression์ ์ถ๊ฐ
```
์์
: Model specification ์
๋ฐ์ดํธ
์ด์ : L ~ Vagueness + controls
์์ : L ~ Vagueness + E (Series A $) + controls
์ด์ : Funding amount๊ฐ later success์ ์ค์ํ confounder
```
#### ๐ข ็พฉ (Gemini) - Vagueness upper bound
```
๊ฒ์ฆ ์ง๋ฌธ:
- "Too vague is bad" ์ด๋ป๊ฒ ์ธก์ ?
- Purple curve์ peak๋ ์ด๋?
- ์ฑ๊ณตํ Series B ๊ธฐ์
๋ค์ vagueness ๋ถํฌ๋?
์ ์: Series B ์ฑ๊ณต ๊ธฐ์
์ 75th percentile์ upper threshold๋ก ํ
์คํธ
```
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**: ___________
**๋ด์ผ (Day 14, 11.3 ์)**: ___________
---
## ๐๏ธ Day 14 - 2025.11.03 (์)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [ ] Time span variations ์คํ (17mo, 24mo, 30mo)
- [ ] H1 regression: E ~ Vagueness (3 time windows)
- [ ] H2 regression: L ~ Vagueness + E (baseline model)
- [ ] Industry-specific results ๋น๊ต
- [ ] Week 2 deliverables ์ ๋ฆฌ
- [ ] Mass Mobility Lab meeting ์ค๋น (tomorrow 12pm)
**Critical Decision**:
- av industry ๋ ๋๋ฌด ๊ท์ ๋ฆฌ์คํฌ๊ฐ ์ปค์ ํํ
์ธ๋์คํธ๋ฆฌ๋ก ์ ํ
- Industry fixed effects vs separate regressions
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐ ๅฉ (ChatGPT) - Pipeline ์คํ
```
์์
: 06_time_variations.py ์คํ
์ฐ์ถ:
- table2_17mo.csv (H1, H2 results)
- table2_24mo.csv
- table2_30mo.csv
์์: ฮฑโ < 0 (H1), ฮฒโ > 0 (H2)
```
#### ๐
ๆ (Claude) - Results validation
```
์์
:
1. Coefficient signs ๊ฒ์ฆ
2. P-values ์ฒดํฌ
3. Effect sizes ํด์
4. Industry heterogeneity ๋ถ์
```
#### ๐ข ็พฉ (Gemini) - Robustness checks
```
๊ฒ์ฆ ํญ๋ชฉ:
- Log(E) vs E
- Industry dummies
- Founder credentials interaction
- M&A censoring vs bounding
```
**Mass Mobility Lab Meeting Prep**:
- [ ] AV-specific results ์ ๋ฆฌ
- [ ] Mobility industry insights ํ์
- [ ] Partnership opportunities ํ์
---
### ๐ ์ ๋
ํ๊ณ
**Week 2 ์๋ฃ**: ___________
**๋ค์ ์ฃผ ๊ณํ**: Paper ์์ฑ ์์ + Figure generation
---
## ๐ Week 2 ํ๊ณ (10.28-11.03)
**๋ชฉํ**: Table 3, Figure 1, 2
**๋ฌ์ฑ**: [โณ] Table 2 (H1: 3 time windows) โ ์คํ ์ค [โณ] Table 3 (H2: model comparison) โ ์ค๊ณ ์๋ฃ [โณ] Figure 1 (Vagueness โ Series A) โ ์ค๊ณ ์๋ฃ [โณ] Figure 2 (Vagueness โ Series B) โ ์ค๊ณ ์๋ฃ
**์๋ ์ **:
- **Empirical design ๊ตฌ์ฒดํ** (Day 13): Time span variations (17/24/30mo) + Industry-specific baselines ํ์
- **Model specification ๊ฐ์ ** (Day 13): E (Series A $)๋ฅผ L regression์ explanatory variable๋ก ์ถ๊ฐ ๊ฒฐ์
- **Upper bound ๋ถ์ ๊ณํ** (Day 13): "Too vague is bad" ์ค์ฆ ํ
์คํธ๋ฅผ ์ํ quadratic term + percentile analysis ์ค๊ณ
- **Industry insights** (Day 14): quantum์ผ๋ก ์ ์ . [[ํํ
์ญ์ฌ]]
---
**์ด๋ ค์ ๋ ์ **:
- **Time management**: Empirical testing์ด ์์๋ณด๋ค ๋ณต์กํ์ฌ Figure generation์ด ์ง์ฐ
- **Vagueness scoring validation**: Built rewards ๊ฐ์ edge cases์ ๋ํ scoring ์ ํ๋ ๊ฒ์ฆ ํ์
- **Upper bound ๋ถํ์ค์ฑ**: Purple curve (Page 8)์ peak ์์น๋ฅผ ์ค์ฆ์ ์ผ๋ก ์ฐพ๋ ๋ฐฉ๋ฒ๋ก ๊ณ ๋ฏผ ์ค
**๋ฐฐ์ด ๊ฒ**:
- **Industry heterogeneity ์ค์์ฑ**: AI (12-24mo), AV (24-36mo), Quantum (24-48mo)์ timeline ์ฐจ์ด๊ฐ H2 effect size์ ์ํฅ
- **Continuous vs discrete trade-off**: E๋ฅผ dollar amount vs binary๋ก ์ฌ์ฉํ ๋์ interpretation ์ฐจ์ด
- **Scott's Focus & Control**: "Think before you act" ์์น์ด empirical design์๋ ์ ์ฉ - simulation ํ execution
- **Meeting-driven insight**: Mass Mobility Lab ๊ฐ์ industry partner๊ฐ data validation๊ณผ interpretation์ ํต์ฌ์
**๋ค์ ์ฃผ ๊ณํ** (์์ ๋จ):
- [ ] Empirical results ์์ฑ & ๊ฒ์ฆ (Day 19)
- [ ] Tables & Figures publication-ready (Day 19-20)
- [ ] Results interpretation & discussion outline (Day 20)
- [ ] QE presentation prep (Day 21)
- [~] Full paper draft โ QE ์ดํ๋ก ์ฐ๊ธฐ (ํ์ค์ ์กฐ์ )
---
# ๐
Week 3: ์ ์ธ(้ฉไบบ) - Empirical Completion & QE Prep
**๋ชฉํ (์์ ๋จ)**: Empirical results ์์ฑ & QE presentation ์ค๋น
- ~~Paper ์์ฑ ๋ฐ ์ ์ถ~~ โ QE ์ดํ๋ก ์ฐ๊ธฐ
- Empirical testing ์๋ฃ & ๊ฒ์ฆ
- Tables & Figures publication-ready
- Results interpretation & discussion
- QE presentation structure
---
## ๐๏ธ Day 15 - 2025.11.04 (ํ)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [x] **Mass Mobility Lab meeting (12-1pm)** - AV insights
- [ ] Figure 1 ์์ฑ: Vagueness โ Early funding (Series A)
- 3 time windows overlay
- Industry-specific subplots (AI, AV, Quantum)
- [ ] Vagueness scoring validation
- Built (rent rewards) case study
- Level 4 vs "autonomous platform" scoring ๊ฒ์ฆ
- [ ] Abstract keywords vs concrete terms ๋น์จ ๋ถ์
**Meeting Questions for Mobility Lab**:
- AV industry์ typical Series AโB timeline?
- Hardware integration challenges & pivoting costs?
- Success cases with vague vs precise early promises?
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐ ๅฉ (ChatGPT) - Figure 1 prototype
```
์์
: Scatter plot with regression line
X-axis: Vagueness score (0-100)
Y-axis: Series A funding amount ($M)
Color: Industry (AI=red, AV=blue, QC=green)
Shape: Time window (17mo=circle, 24mo=square, 30mo=triangle)
์ฐ์ถ: empirics/output/figure1_h1.png
```
#### ๐
ๆ (Claude) - Mass Mobility Lab insights
```
Meeting takeaways:
- [ ] AV-specific timeline insights
- [ ] Partnership opportunities
- [ ] Data validation from industry perspective
```
#### ๐ข ็พฉ (Gemini) - Scoring validation
```
๊ฒ์ฆ: Built rewards case
Expected: Mid-range vagueness (40-60)
Rationale: "Rewards for rent" = clear value prop,
but platform play = vague implementation
```
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**: ___________
**๋ด์ผ (Day 16, 11.5 ์)**: Figure 2 + Vagueness upper bound analysis
---
## ๐๏ธ Day 16 - 2025.11.05 (์)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [ ] Figure 2 ์์ฑ: Vagueness โ Later success (Series B)
- Logistic curve visualization
- Confidence intervals
- Industry-specific curves
- [ ] **Vagueness upper bound analysis** (Page 8 purple curve)
- Series B ์ฑ๊ณต ๊ธฐ์
์ vagueness ๋ถํฌ
- 75th, 90th percentile ๊ณ์ฐ
- Quadratic term ํ
์คํธ: L ~ Vagueness + Vaguenessยฒ
- [ ] Scott's video content ์ ๋ฆฌ ์์
- Focus vs Execute framework
- Bob Kerns windshield wiper case
- Mickey Mouse examples
**Key Question**: "Too vague is bad" ์ค์ฆ์ ์ผ๋ก ํ์ธ๋๋๊ฐ?
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐ ๅฉ (ChatGPT) - Figure 2 & Quadratic model
```
์์
:
1. Logistic regression visualization
2. Vaguenessยฒ interaction term ์ถ๊ฐ
์ฐ์ถ:
- empirics/output/figure2_h2.png
- table3_quadratic.csv
```
#### ๐
ๆ (Claude) - Upper bound analysis
```
์์
: Series B ์ฑ๊ณต ๊ธฐ์
vagueness ๋ถํฌ ๋ถ์
๋ฐฉ๋ฒ:
1. Filter: L==1 (Series B achieved)
2. Calculate: percentiles (25th, 50th, 75th, 90th)
3. Compare: Success vs failure vagueness distributions
4. Test: Inverted U-shape hypothesis
```
#### ๐ข ็พฉ (Gemini) - Scott's video digest
```
์์
: Focus & Control framework ์ ๋ฆฌ
ํต์ฌ:
- Think before you act (simulation before execution)
- Positive intent assumptions can fail (Ford case)
- History teaches us patterns
์ฐ์ถ: 3_็พฉ_๊ฒ์ฆ/scotts_focus_control.md
```
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**: ___________
**๋ด์ผ (Day 17, 11.6 ๋ชฉ)**: ___________
---
## ๐๏ธ Day 17 - 2025.11.06 (๋ชฉ)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [ ] **Robustness checks suite ์์ฑ**
- Log(E) vs E specification
- Industry fixed effects vs separate regressions
- Founder credentials interaction
- M&A censoring (lower bound=0, upper bound=1)
- Alternative time windows sensitivity
- [ ] Table 3 ์์ฑ (Model comparison)
- Model 1: L ~ Vagueness
- Model 2: L ~ Vagueness + E
- Model 3: L ~ Vagueness + E + Vaguenessยฒ (upper bound)
- Model 4: L ~ Vagueness ร Industry + E (heterogeneity)
- [ ] **Bayesian entrepreneurship papers ์ ๋ฆฌ ์์**
- Movie poster-style summary ํ
ํ๋ฆฟ ์ค๊ณ
- First 3 papers pilot
**Critical Tasks**:
- P-values < 0.05 ํ์ธ
- Effect sizes interpretation
- Alternative explanations ์ ๊ฒ
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐ ๅฉ (ChatGPT) - Robustness suite
```
์์
: 07_robustness_checks.py
์ฐ์ถ:
- table3_robustness.csv (8 model specifications)
- sensitivity_analysis.png
```
#### ๐
ๆ (Claude) - Model comparison table
```
์์
: LaTeX table generation
ํ์:
| Model | Vagueness | E | Vaguenessยฒ | N | Rยฒ | AIC |
์ฐ์ถ: empirics/output/table3_models.tex
```
#### ๐ข ็พฉ (Gemini) - Bayesian papers pilot
```
์์
: Movie poster template for academic papers
์์:
- Title, Authors, Year
- Key equation/framework
- Main finding (1 sentence)
- Rating (impact/relevance)
- Genre (theory/empirical/method)
์ฐ์ถ: 3_็พฉ_๊ฒ์ฆ/bayesian_papers_template.md
```
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**: ___________
**๋ด์ผ (Day 18, 11.7 ๊ธ)**: ___________
---
## ๐๏ธ Day 18 - 2025.11.07 (๊ธ) ๐
![[์ ํฌ์ผ์ง๐ฉธ 2025_11_09.excalidraw]]
coords = {
"stage": ["E","L1","L2"],
"window": [("2022-12","2024-12"), ("2022-12","2025-11"), ("2021-12","2023-12")],
"moderator": ["option_level","is_hardware"],
"scaling": ["zscore","winsor99_z"],
# new toggles
"employee_control": [0,1], # 1=include employees_log
"region_fe": [0,1], # 1=include C(region)
"founder_credibility": [0,1] # 1=include founder credibility control
}
#### ๊ฒฐ์ ์ฌํญ
1.
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- **All empirical results ํตํฉ ๊ฒํ **
- Table 1: Descriptive statistics (์ํ์, DV base-rate, ์๋์ฐ๋ณ)
- Table 2: HE ๊ฒฐ๊ณผ (3 windows; 2022-12โ24-12, 2022-12โ25-11, 2021-12โ23-12)
- Table 3: HL ๊ฒฐ๊ณผ (L1/L2 ร moderator 2์ข
ร estimator 2์ข
ํต์ฌ ์ฌ์)
- Figure 1: Vagueness โ Series A (HE) ์๋ฃ ํ์ธ
- Figure 2: Vagueness ร Option level โ Series B(+)/IPO (HL) ์๋ฃ ํ์ธ
- **Week 3 ์ ๋ต ์ฌ์กฐ์ **
- Empirical work completion timeline (D19โD21)
- Paper writing realistic schedule (QE ์ฐ์ )
- QE (Sep 15, 2025) backward planning ์
๋ฐ์ดํธ
- **Content format ๊ฒฐ์ ** (Podcast vs other)
- Scott video series ๊ตฌ์ฑ์
- Bayesian papers digest ํฌ๋งท
- Input requirements ์ ๋ฆฌ
- Manus vs GPT vs Claude ์ญํ ์ฌ์ ์
**Critical Reflection**:
- 3์ฃผ ๊ณํ ๋๋น **์ค์ฆ ํ
์คํธ** ์งํ๋ฅ ์?
- Tables & Figures๊ฐ **publication-ready** ์์ค์ธ๊ฐ?
- ๋น ์ง ์กฐ๊ฐ(๋ฐ์ดํฐ/๊ทธ๋ฆผ/์ค๋ช
)์?
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐
ๆ (Claude) - Status quo assessment
```
์์
: ์คํ์์ง ์ ๊ฒ
โ
xarray coords ํ์ (stage, window, dv_coding, moderator, โฆ)
โ
expected_sign & evidence_score ๊ตฌํ ๋ช
์ธ ํ์
โณ run_multiverse() ์ค์ผ๋ ํค (CLI ํฌํจ) โ ์ค๋ ๊ตฌํ
โณ plot_multiverse() ๋ฆฌ๋ณธ/์์ ๊ท์น ๋ฐ์ โ ์ค๋ ๊ตฌํ
โณ NetCDF + CSV ์ ์ฅ ๊ฒฝ๋ก ์ ๊ฒ
```
#### ๐ ๅฉ (ChatGPT) - Gap analysis
```
์์
: QE ๊ธฐ์ค ์ถฉ์กฑ ์ ๊ฒ
1. ๊ฐ์ค 2๊ฐ ํ
์คํธ(H1/H2) โ
2. ์ ์์ฑ ๋ณด๊ณ (p<0.05) โ HL ํต์ฌ์ฌ์์์ ํ์ธ ํ์
3. ๊ฐ๊ฑด์ฑ(์๋์ฐ 3๊ฐ, dv_coding 3์ข
) โ ์คํ ํ ํ/๊ทธ๋ฆผ ๋ฐ์
4. ์ฐ์
์ด์ง์ฑ(์ต์
๋ ๋ฒจ vs is_hardware) โ ๋น๊ตํ ํ์
5. ์ด๋ก ํด์(VOI/RO/C) โ Figure ์บก์
/๋์ค์ปค์
๋ฌธ์ฅํ ํ์
6. ํ๊ณ/ํฅํ๊ณผ์ โ IPO ํฌํจ/์ ์ธ ์ฐจ์ด ๋ฐ ๋ฐ์ดํฐ ํ๊ณ ์ ๋ฆฌ
Gap list:
- [ ] HL(L2) ํต์ฌ์ฌ์ p๊ฐ/๋ถํธ ์บก์
๋ฌธ์ฅ
- [ ] Evidence heatmap(๋
น/์ /ํ) ์ต์ข
์คํ์ผ
- [ ] DV base-rate ํ(์๋์ฐ๋ณ) ์ฝ์
```
#### ๐ข ็พฉ (Gemini) - Week 3 re-plan
```
์์
: ํ์ค ํ์๋ผ์ธ ์ฌ์ค๊ณ (D19โD21)
์ฐ์ ์์:
1) multiverse ์์ง ์คํ โ NetCDF/PNG ์ฐ์ถ
2) Tables 2โ3, Figures 1โ2 ์ต์ข
์ ์ฅ
3) ๊ฒฐ๊ณผ ํด์ ๋จ๋ฝ ์ด์(5โ7๋ฌธ์ฅ) ์์ฑ
์์ฌ๊ฒฐ์ : Paper full draft๋ QE ์ดํ, ๊ฒฐ๊ณผยท๊ทธ๋ฆผ ์ฐ์
```
**Content Format Decision**:
```
Input needed:
- ํ๊น(์ง๋๊ต์/๋๋ฃ vs ๋์ค)
- ์ฃผ๊ธฐ(๊ฒฉ์ฃผ ๊ถ๊ณ )
- ๊น์ด(์ค์ฆํด์ค ์ค์ฌ)
- ํ๋ซํผ(์๋ฉด+์งง์ ์ค๋์ค ์์ฝ)
โ ์ฃผ๋ง์ WhatsApp์ผ๋ก ํ์
```
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**:
- multiverse ์ฐฝ ๊ตฌ์กฐ ํ์ , windows 3๊ฐ ํฉ์, expected-sign ๊ท์น ํ์
- Claude ํ๋กฌํํธ ์ ๋ฌ ๋ฐ ๊ตฌํ ์ฐฉ์
**Week 3 Revised Plan** (11.8โ11.10):
- Day 19 (ํ ): ์์ง ๊ตฌํ ์๋ฃ & ์ ์คํ ์คํ โ `dataset.nc`, ๊ธฐ๋ณธ heatmaps ์์ฑ
- Day 20 (์ผ): Tables/figures ํด๋ฆฌ์ฑ & ์ค๋ช
๋ฌธ์ฅ(๊ฒฐ๊ณผ ํด์) ์์ฑ
- Day 21 (์): QE ํ๋ฆฌ์ ํ
์ด์
์ฌ๋ผ์ด๋ ๋ผ๋ + Discussion ๊ฐ์
**Paper writing ํ์ค์ ์กฐ์ **:
- Full draft๋ QE ์ดํ๋ก ์ด์
- QE ๋ชฉํ: **๊ฒฌ๊ณ ํ ์ฆ๊ฑฐ + ๋ช
ํํ ํด์ + ์ง๊ด์ ๊ทธ๋ฆผ**
**Next immediate actions**:
1. Claude์๊ฒ ์ ํ๋กฌํํธ ์ ๋ฌ โ ๊ตฌํ ์ฐฉ์ ํ์ธ
2. ๋ฐ์ดํฐ ํ์ธ: ์๋์ฐ๋ณ DV base-rate์ nobs ์์ฑ
3. ๊ฒฐ๊ณผํ์ผ ๊ฒฝ๋ก ํ์คํ(`outputs/multiverse/โฆ`) ๋ฐ ๋ฒ์ ํ๊น
---
## ๐๏ธ Day 19 - 2025.11.08 (ํ )
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [ ] **All empirical results ์ต์ข
๊ฒ์ฆ**
- H1 (3 time windows): ฮฑโ < 0 ํ์ธ
- H2 (4 models): ฮฒโ > 0 ํ์ธ
- P-values < 0.05 ํ์ธ
- Effect sizes interpretation
- [ ] **Tables finalization**
- Table 1: Descriptive statistics (N, mean, SD by industry)
- Table 2: H1 results (17mo, 24mo, 30mo comparison)
- Table 3: H2 model comparison (4 specifications)
- [ ] **Robustness checks ์์ฑ**
- Log(E) specification
- Industry fixed effects
- M&A bounds (lower=0, upper=1)
- Quadratic term (vagueness upper bound)
- [ ] **Missing data ์ ๊ฒ**
- ์ค์ ํ์ผ ์กด์ฌ ์ฌ๋ถ ํ์ธ
- Re-run if necessary
**Critical Question**: QE์ ํ์ํ minimum sufficient statistics๋?
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐
ๆ (Claude) - Final verification
```
์์
: empirics/output/ ๋๋ ํ ๋ฆฌ ์ ๊ฒ
Required files:
- [ ] company_master.csv (651MB) โ
- [ ] deal_panel.csv (needs fix)
- [ ] table1_descriptives.csv
- [ ] table2_h1_time_variations.csv
- [ ] table3_h2_models.csv
- [ ] figure1_h1.png
- [ ] figure2_h2.png
```
#### ๐ ๅฉ (ChatGPT) - Re-run pipeline if needed
```
์์
: 08_final_analysis.py
- Re-run entire pipeline with latest specifications
- Generate all missing tables/figures
- Export LaTeX-ready format
```
#### ๐ข ็พฉ (Gemini) - Results interpretation
```
์์
: ๊ฐ ๊ฒฐ๊ณผ์ substantive meaning ์ ๋ฆฌ
H1: Vagueness penalty in Series A
- Magnitude: $1M decrease per 10-point vagueness increase?
- Industry differences: AV > AI > Quantum?
H2: Vagueness benefit in Series B
- Magnitude: 5% probability increase per 10-point?
- Conditional on Series A amount?
- Upper bound at 70th percentile?
```
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**: ___________
**๋ด์ผ (Day 20, 11.9 ์ผ)**: Figures polishing & Discussion outline
---
## ๐๏ธ Day 20 - 2025.11.09 (์ผ)
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [ ] **Figures publication-ready**
- Figure 1 polishing:
- Axis labels clear
- Legend readable
- Industry colors consistent
- Regression lines with CI
- Figure 2 polishing:
- Logistic curve smooth
- Predicted probabilities
- Comparison across models
- [ ] **Discussion section outline**
- Theoretical implications
- Scott's "precise promisers disappoint" connection
- Yet Ming (option) vs Bob Langer (reputation) framework
- Industry heterogeneity interpretation
- Vagueness upper bound ("too vague is bad")
- [ ] **Limitations & Future Work**
- Data limitations (PitchBook, time window)
- Measurement (LIWC vs manual coding)
- Causality (observational data)
- Generalizability (AI/AV/Quantum only)
- [ ] **Bayesian papers digest** (3-5 papers)
- Movie poster format ์ ์ฉ
- Manus ์คํ
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐ ๅฉ (ChatGPT) - Figure polishing
```
์์
: matplotlib/seaborn styling
Requirements:
- Font: Arial 12pt
- DPI: 300 (publication quality)
- Size: 6"x4" (single column) or 12"x4" (double)
- Color: Industry-consistent (AI=red, AV=blue, QC=green)
์ฐ์ถ: figure1_final.png, figure2_final.png
```
#### ๐
ๆ (Claude) - Discussion outline
```
์์
: Results โ Theory ์ฐ๊ฒฐ
Structure:
1. H1 confirmed: Vagueness penalty (information asymmetry)
2. H2 confirmed: Vagueness benefit (real options)
3. Industry heterogeneity: Integration cost matters
4. Upper bound: Too vague = no credibility
5. Implications: Optimal vagueness level (OIL)
6. Limitations & robustness
```
#### ๐ข ็พฉ (Gemini) - Bayesian papers with Manus
ํ์ดํผ๋ ์ง๋ฏผ์ด ๋
ผ๋ฌธ ๊ตฌ์กฐ๋ฅผ ์ด์ฉํด
```
์์
: Movie poster template ์คํ
Papers to start:
1. [First paper from list]
2. [Second paper]
3. [Third paper]
Output format: Image + text summary
Tool comparison: Manus vs GPT vs Claude
```
---
### ๐ ์ ๋
ํ๊ณ
**์๋ฃ**: ___________
**๋ด์ผ (Day 21, 11.10 ์)**: QE presentation prep & Final checklist
---
## ๐๏ธ Day 21 - 2025.11.10 (์) ๐ฏ
### ๐
์์นจ ๊ณํ
**์ค๋์ ๋ชฉํ**:
- [ ] **QE presentation structure ํ์ **
- Slide outline (15-20 slides)
- Hypothesis โ Data โ Results flow
- Key figures & tables ์ ์
- Q&A ์์ ์ง๋ฌธ ์ค๋น
- [ ] **3์ฃผ Deliverables ์ต์ข
์ฒดํฌ๋ฆฌ์คํธ**
- โ Pipeline infrastructure (Scripts 01-05, xarray)
- โ H2 survival redefinition (Series B progression)
- [ ] Table 1, 2, 3 ์์ฑ ์ฌ๋ถ
- [ ] Figure 1, 2 ์์ฑ ์ฌ๋ถ
- [ ] Robustness checks ๋ฌธ์ํ
- [ ] Discussion outline
- [ ] **Charlie & Scott communication**
- Progress update email ์ด์
- Next steps timeline (post-QE)
- Remaining paper sections plan
- [ ] **Week 3 & Overall ํ๊ณ **
**Critical Decisions**:
- QE presentation: Results-focused vs Theory-heavy?
- Paper timeline: When to share draft with advisors?
- Content format: Final decision on podcast/paper digest
---
### ๐ผ ์์
๋ก๊ทธ
#### ๐
ๆ (Claude) - QE presentation outline
```
์์
: Slide structure ์ค๊ณ
Proposed flow:
1. Motivation (2 slides): Why vagueness matters
2. Theory (3 slides): OIL framework, H1 & H2
3. Data (2 slides): PitchBook, vagueness scoring
4. H1 Results (2 slides): Table 2 + Figure 1
5. H2 Results (3 slides): Table 3 + Figure 2
6. Robustness (2 slides): Time, industry, quadratic
7. Discussion (2 slides): Implications & limitations
8. Future Work (1 slide)
Total: ~17 slides (15 min + 5 min Q&A)
```
#### ๐ ๅฉ (ChatGPT) - Deliverables checklist
```
์์
: empirics/ ํด๋ ์ ์ฒด ์ ๊ฒ
Required vs Actual:
- code/ ๋๋ ํ ๋ฆฌ: [โ/โ]
- output/ ๋๋ ํ ๋ฆฌ: [โ/โ]
- documentation/: [โ/โ]
์ฐ์ถ: DELIVERABLES_CHECKLIST.md
```
#### ๐ข ็พฉ (Gemini) - Progress email ์ด์
```
์์
: Charlie & Scott ์ด๋ฉ์ผ
Subject: QE Empirical Testing Progress (Week 1-3)
Content:
- Pipeline ๊ตฌ์ถ ์๋ฃ
- H1, H2 ์ค์ฆ ๋ถ์ ์งํ ์ค
- Tables & Figures ์์ฑ ์ค
- QE presentation ์ค๋น
- Next: Full paper draft (post-QE)
Tone: Progress + realistic timeline
```
---
### ๐ ์ต์ข
์น๋ฆฌ... ์๋, ์ค๊ฐ ์ ๊ฒ ๐๏ธ
**3์ฃผ ์๋ฃ ํํฉ**:
- [โณ] Table 1, 2, 3 โ Status: _______
- [โณ] Figure 1, 2 โ Status: _______
- [โ] Pipeline infrastructure
- [โ] Theoretical framework
- [โณ] Empirical testing
- [โณ] QE presentation
**์ ์ถ ์๋ฃ**: QE presentation outline
**๋ค์ ๋จ๊ณ (Post-QE)**:
- [ ] Full paper draft (Introduction, Theory, Method)
- [ ] Results section ์์ฑ
- [ ] Discussion & Conclusion
- [ ] Charlie & Scott ํผ๋๋ฐฑ ๋ฐ์
**3์ฃผ ์ดํ**:
- ์ํ ํ์: ___ํ
- ํต์ฌ ์ฑ์ทจ: Pipeline + H2 redefinition + Empirical design
- ๊ฐ์ฅ ํฐ ๋ฐฐ์: ___________
- ๊ฐ์ฅ ์ด๋ ค์ ๋ ๊ฒ: ___________
- Adjusted expectations: Paper full draft โ post-QE
**ๅฟ
ๆญปๅฝ็ continues...**
- QE๊น์ง: __ ๊ฐ์
- Paper submission target: ________
---
## ๐ Week 3 ํ๊ณ (11.04-11.10)
**๋ชฉํ (์์ ๋จ)**: Empirical completion & QE prep
**๋ฌ์ฑ**: [โณ] Empirical results โ Status TBD on Day 21 [โณ] Tables 1, 2, 3 โ Status TBD on Day 21 [โณ] Figures 1, 2 โ Status TBD on Day 21 [โณ] QE presentation outline โ Day 21 target [~] Full paper draft โ Deferred to post-QE
**์๋ ์ **:
- **Realistic re-planning** (Day 18): 3์ฃผ ๋ชฉํ๋ฅผ empirical completion์ผ๋ก ํ์คํ, full paper draft๋ QE ์ดํ๋ก ์ฐ๊ธฐ
- **Mass Mobility Lab partnership** (Day 15): Industry validation ๊ธฐํ ํ๋ณด
- **Upper bound analysis** (Day 16): "Too vague is bad" ์ค์ฆ ํ
์คํธ ์ค๊ณ (quadratic term + percentile)
- **Comprehensive robustness** (Day 17): 8 model specifications๋ก ๊ฒฐ๊ณผ ๊ฐ๊ฑด์ฑ ํ์ธ
- **Bayesian papers pilot** (Day 17, 20): Movie poster template ์คํ ์์
**์ด๋ ค์ ๋ ์ **:
- **Scope creep**: Empirical testing์ด ์์๋ณด๋ค ๋ณต์กํ์ฌ paper writing ์๊ฐ ๋ถ์กฑ
- **Data quality issues**: ์ฌ์ ํ deal_panel.csv, future date leakage ๋ฑ ๋ฏธํด๊ฒฐ
- **Time pressure**: QE (Sept 15, 2025)๊น์ง์ ์๊ฐ์ ๊ณ ๋ คํ ํ์ค์ timeline ์กฐ์ ํ์
- **Content format ๋ฏธ๊ฒฐ์ **: Podcast vs paper digest ํ์ ๊ฒฐ์ ๋ณด๋ฅ
**๋ฐฐ์ด ๊ฒ**:
- **Empirical work โ Paper writing**: ์ค์ฆ ๋ถ์์ ์ง์คํ๋, ๋
ผ๋ฌธ ์์ฑ์ ๋ณ๋ timeline ํ์
- **Meeting-driven insights**: Mass Mobility Lab ๊ฐ์ ์ธ๋ถ ํผ๋๋ฐฑ์ด research quality ํฅ์์ ํต์ฌ
- **Flexible planning**: ์ด๊ธฐ 3์ฃผ ๊ณํ(Paper ์์ฑ)์ ๋นํ์ค์ ์ด์์. Empirical completion์ด ๋ ์ค์ํ milestone
- **Tool experimentation**: Manus, GPT, Claude ๊ฐ๊ฐ์ ๊ฐ์ ํ์
์ค (Manus: coding/website, GPT: speed, Claude: structure)
**์ต์ข
์ฑ์ทจ** (3์ฃผ ์ดํฉ):
- โ
Pipeline infrastructure (์ฌ์คํ ๊ฐ๋ฅ)
- โ
H2 redefinition (Series B progression)
- โ
Empirical design (time/industry variations)
- โณ Tables & Figures (completion ํ์ธ ํ์)
- โ
Theoretical framework (OIL + upper bound)
- โณ QE presentation (outline ์์ฑ ์ค)
**Post-QE Plan**:
- Full paper draft (4 sections)
- Advisor feedback iteration
- Conference submission target
- Content format finalization (Bayesian papers + Scott's videos)
---
## ๐ ๋ช
๋ํด์ 1์ฐจ ์ ํฌ ์ข
๋ฃ
**"์ ์๊ฒ๋ ์์ง 12์ฒ์ ๋ฐฐ๊ฐ ์์ต๋๋ค"**
**์ฐ๋ฆฌ๋ ์ฒซ ์ ํฌ๋ฅผ ๋ง์ณค์ต๋๋ค.** โ๏ธ
---
**์์**: 2025.10.21 (ํ)
**1์ฐจ ์๋ฃ**: 2025.11.10 (์)
**๊ธฐ๊ฐ**: 21์ผ (3์ฃผ)
**๋น์ด ๋ชฉํ**: Table 3, Figure 2, Paper 1ํธ
**์ค์ ๋ฌ์ฑ**:
- โ
Pipeline infrastructure (Scripts 01-05, xarray, checkpoints)
- โ
H2 survival redefinition (98% โ 12-15% base rate)
- โ
Empirical design (17/24/30mo time variations, industry-specific)
- โณ Tables 1, 2, 3 (์คํ ์ค)
- โณ Figures 1, 2 (์ค๊ณ ์๋ฃ)
- โณ QE presentation outline
**ๅฟ
ๆญปๅฝ็์ ๊ตํ**:
1. **Empirical work > Paper writing**: ์ข์ ๊ฒฐ๊ณผ๊ฐ ์ข์ ๋
ผ๋ฌธ์ ๊ธฐ์ด
2. **Think before you execute**: Scott์ Focus & Control์ด research์๋ ์ ์ฉ
3. **Realistic timeline**: 3์ฃผ์ paper ์์ฑ์ ๋นํ์ค์ , empirical completion์ด ์ค์ ๋ชฉํ
4. **External validation**: Mass Mobility Lab ๊ฐ์ industry partner๊ฐ ์ค์
**๋ค์ ์ ํฌ (Post-QE)**:
- [ ] Paper full draft (Introduction, Theory, Method, Results, Discussion)
- [ ] Charlie & Scott ํผ๋๋ฐฑ ๋ฐ์
- [ ] Conference submission
- [ ] Content format (Bayesian papers digest) ์คํ
**ๅฟ
็ๅฝๆญป์ ๋ค์ง**:
- QE ํต๊ณผ๊ฐ ๋ชฉํ๊ฐ ์๋๋ผ ์์
- Empirical rigor๊ฐ theoretical contribution์ ๊ธฐ๋ฐ
- Advisor feedback loop๊ฐ research quality์ ํต์ฌ
**์ ํฌ๋ ๊ณ์๋๋ค... ๐**
---
# โญ๏ธ
check whether later VC funding was the VERY NEXT round of early VC funding (if half of them had bridge round either censor them or get deal data to code round number)
์ ๊น ๋๋์ฉ claude code์ด ๋ด ๋ช
๋ น์ ์คํดํ์ฌ "Among companies at Early Stage VC at time t, what is the probability of progressing to Later Stage VC within ฮt years?" ์ด ์๋ "Does early VC funding mediate the relationship between vagueness and later success?"์ ์ฐ๊ตฌ์ง๋ฌธ์ผ๋ก ์ฐฉ๊ฐํ์ฌ XX๋ฅผ
----
```python
E=1: Company is AT "Early Stage VC" at baseline (2022.01)
โ ์ด๋ค์ด "๊ด์ฐฐ ์ฝํธํธ"
L=1: Company progressed to "Later Stage VC" by endpoint (2023.12)
โ ์ด๋ค์ด "์ฑ๊ณต์ ์ผ๋ก ์งํํ ์ผ์ด์ค"
EโL rate: 7,623 / 45,738 = 16.7%
โ "2๋
๋ด Later Stage ์งํ ํ๋ฅ "
```
### โ
์ข์ ์์:
1. **EโL transitions ํ์ธ**: 7,623๊ฐ ํ์ฌ๊ฐ Early Stage โ Later Stage ์งํ
2. **Timing ๋ฐ์ดํฐ ์์**: 5,941๊ฐ ํ์ฌ (77.9%)์ LastFinancingDate ์ฌ์ฉ ๊ฐ๋ฅ
3. **Median gap: 699์ผ (์ฝ 23๊ฐ์)**ย = ํฉ๋ฆฌ์ ์ธ AโB ์งํ ๊ธฐ๊ฐ
### โ ๏ธ ๋์ ์์:
1. **Round count ์ปฌ๋ผ ์์**:ย `TotalFundingRounds`ย ๊ฐ์ ์ปฌ๋ผ์ด PitchBook ๋ฐ์ดํฐ์ ์์ด์ bridge rounds๋ฅผย **์ง์ ํ์ธ ๋ถ๊ฐ๋ฅ**
2. **Date gap๋ง์ผ๋ก๋ ๋ถ์ ํ**: ๋ ์ง ์ฐจ์ด๋ก๋ง ์ถ์ ํด์ผ ํจ
**Tracking loss (47๊ฐ)**๋ ๋ด ์์ผ๋ก ๋ฌป์ด์ฃผ์๋ค.. "We tracked 46,129 companies initially at Early Stage VC. Due to data availability, 45,738 (99.1%) were successfully matched at 2.0 years, and 45,691 (99.0%) at 2.5 years."
---
# 11-15
- ### [gpt1](https://chatgpt.com/c/6912a997-50bc-8333-ab49-170647e5cdfe)
- Nanda์ ํ์ต ๊ด์ ์์์ ์ ์๋ ํ์ด๋ธ๋ฆฌ๋ 2๋จ๊ณ ์ค๊ณ๋ฅผ ์ฌ์ฌํ๋ฉฐ, **์์กดํธ์ยทHeckman ๊ต์ ๋๋ฝยท๊ฒฝ๋กํผ๋**์ ์น๋ช
๊ฒฐํจ์ผ๋ก ์ง์ ํ๊ณ , **์ ์ ๋ณด์ (Heckman/IPW/๊ณต๋์ถ์ )+์คํ ์ ๋ฐ๋(sensitivityยทspecificity) ๊ณ๋ํ**๋ก ์๋ณ์ ๊ฐํํ๋ ๋ก๋๋งต์ ์ ์ํ์ต๋๋ค.
**๊ฐ์ฅ ๋๋ผ์ ๋ ์ **: **์์กด์ ์กฐ๊ฑด๋ถ stepโup์ ํฌ๊ธฐ**๋ ๋น์ฉ ์์ธ๋ณด๋ค **ํน์ด๋(s2)**๊ฐ ์ง์ ์ข์ฐโ**s2โ โ ํต๊ณผ์จโ, ํต๊ณผ ์ posterior ์ ํโ**โํ์ฌ ์ํํธ์จ์ด์ โ์ ๋น์ฉยท๊ณ stepโupโ ์กฐํฉ์ ๋จ์ ์ ์ผ๋ก ์ค๋ช
ํ๋ค๋ ์ ์
๋๋ค.
### [gpt2](https://chatgpt.com/c/6914f798-ec98-8326-8aa1-051420aef7a5)
- _W2 ์ฌ๋ผ์ด๋ยท๋์ยท์ฝ๋ ํ์ดํ๋ผ์ธ์ HEVโHLVFโHSF ์ฉ์ด์ E/L/V/S/F ์ยท์ ๊ท์น์ผ๋ก ํต์ผํ๊ณ , ํํ
์คํํธ์
๋ฐ์ดํฐ๋ฅผ ์ค์ฌ์ผ๋ก F1โF6(ํนํ `L|F`, `L|C` ์ํธ์์ฉ/์ค์๊ฐ ๊ณ ์ ) ์๋ ์์ฑ ์ฒด๊ณ๋ฅผ ์ ๋ฆฌํ๋ ์์
._
**๊ฐ์ฅ ๋๋ผ์ ๋ ์ :**
- **HLVF์์ E(early funding)๋ฅผ โํต์ ๋ณ์โ๊ฐ ์๋๋ผ _๋งค๊ฐ_๋ก ๋๊ณ ๋ชจ๋ธ/ํ๋กฏ์์ ์ ์ธ(NO early_funding)** ํ๋, ์ด๋ก (์ค๋ฌผ์ต์
์ ์คํ ๊ฐ๋ฅ์ฑ), ์ถ์ ์, ๋์, ๊ทธ๋ฆฌ๊ณ ์ํธ์์ฉ ๊ทธ๋ํ์ ํด์์ด ํ ๋ฒ์ ์ ๋ ฌ๋์์ต๋๋คโ๋ฉ์์ง๊ฐ ํจ์ฌ ๋๋ ทํด์ก์ด์.
### [gpt3](https://chatgpt.com/c/6913ec4b-c008-832c-bf0f-d1abf520140d)
- ์
๋ก๋๋ CSV๋ฅผ ํฉํธ์ฒดํฌํ๊ณ , PitchBook์ _description/keywords_ ํ์ ์ถ๊ฐํด ์ ๋ต์ ๋ชจํธ์ฑ ์ ์๋ฅผ ์ฌ๊ณ์ฐยทํ์ผ๋ก ์ ๊ณตํ์ต๋๋ค.
**๊ฐ์ฅ ๋๋ผ์ ๋ ์ **: CSV์ ๋ด๋ถ ์งํ `V`๊ฐ ํ
์คํธ ๊ธฐ๋ฐ ๋ชจํธ์ฑ ์ ์์ **์์ ์๊ด(โ โ0.21, n=15)**์ ๋ณด์๋ค๋ ์ โ์ฆ, `V`๊ฐ ๋ชจํธ์ฑ์ ์๋ฏธํ์ง ์๊ฑฐ๋ ์ ์๊ฐ ๋ฌ๋ผ ๋ณด์ธ๋ค๋ ์ ํธ๊ฐ ๋๋ ทํ์ต๋๋ค.
**๋ํ ์์์ผ:** 2025โ11โ15
**ํ ์ค ์์ฝ:** W2 ํต์ฌ RQ(_โVรF๊ฐ ๋จ๊ธฐ ์ค์ผ์ผ ํ๋ฅ ์ ๋์ด๋๊ฐ?โ_)๋ฅผ ๊ธฐ์ค์ผ๋ก **Aโ์ฝํธํธ ์ดํญ ๋ก์ง**๊ณผ **GlobalโQuantum EmpiricalโBayes ์ฌ์ ์ฐจ์ฉ**(๋ถ๋ถํ๋ง) ์ค๊ณ๋ฅผ ์ ๋ฆฌํ๊ณ , ์ด๋ฅผ ๊ต์๋ sync์ฉ **11โ์ฌ๋ผ์ด๋ PDF**์ ๋ํด๋ก ์์ฑํ๋ค.
### [gpt4](https://chatgpt.com/c/6915789b-d16c-8327-ae61-4af6ebc0da94)
**ํ ์ค ์์ฝ:** ์ ๋ต์ ๋ชจํธ์ฑ (V)์ ์ํจ๊ณผ๋ **์ต์
ํ์ฌ๊ฐ๋ฅ์ฑ (F)** ์ด ๋์ ๋๋ง ์(+)์ด๋ฏ๋ก, ์์กด์โํ์ **stepโup** ๋์ **cohortโlevel (\Pr(L))** ๋ก ๊ฒ์ฆํ๋๋ก ๋ฑ์ ์ฌ์ ๋ ฌํ๊ณ , ํต์ฌ ๋ํ์
์ Early Stage VCยทAccelerator/IncubatorยทSeedยทLater Stage VCยทGrant์ 5๊ฐ๋ก ๊ณ ์ ํ๋ค.
**๊ฐ์ฅ ๋๋ผ์ ๋ ์ :** โFirstFinancingDealTypeโ ์ฐจํธ์์ **Buyout/LBO**์ **Later Stage VC**๊ฐ ์์๋ก ๋ํ๋ ๊ฒโ์ฒซ ์๊ธ์ ํ์ ์ฑ์๋จ๊ณ ๊ฑฐ๋๊ฐ ์์ฌ **Aโ์ฝํธํธ ์๋๋ฅผ ํผ์**ํ ์ ํธ๋ผ์, p.43์ ์ ์์ ๋ฐ๋ผ _inclusion/exclusion_ ์ฌ์ฝ๋ฉ์ด ํ์๋ผ๋ ์ ์ด์์ต๋๋ค(โE=Early Stage VC, L=Later Stage VCโ์ ์ฝํธํธโ๋
ผ๋ฆฌ์๋ ์ถฉ๋).
### [gpt5](https://chatgpt.com/c/69157cde-dc78-8328-be52-33739e616699)
**๊ฐ์ฅ ๋๋ผ์ ๋ ์ :** ์์กด์ ์ ์ฉ ์งํ(**stepโup, S**) ๋์ **์ฝํธํธ ์์ค์ Pr(L=1)**์ ์ ๋ฉด์ ์ธ์ฐ๊ณ , **์ํ๋ณธ(Quantum)**์๋ **๊ธ๋ก๋ฒ ฮฒ์ ํฌ์คํฐ๋ฆฌ์ด๋ฅผ ์ฌ์ ์ผ๋ก ์ฐจ์ฉ**ํด ์์ ์ ์ผ๋ก ฮฒVFฮฒ_{VF}ฮฒVFโ๋ฅผ ์๋ณยท์๊ฐํํ๋ ค๋ ์์ด๋์ด๊ฐ ์ด๋ก (๋ชจํธ์ฑร์ ์ฐ์ฑ ์๋ณด์ฑ)๊ณผ ๋ฐฉ๋ฒ์ด ์์ฃผ ์ ํฉ์ ์ผ๋ก ๋ง๋ฌผ๋ฆฐ๋ค๋ ์ .
**๋ํ ์์์ผ:** 2025โ11โ15 (UTC ๊ธฐ์ค)
**ํ ์ค ์์ฝ:**
์ด๊ธฐ ์ฝํธํธ ์ ๋์ ๋์์ผ๋ก _์ค์ผ์ผ ์ฌ๋ถ_๋ฅผ ์ด์ง ๋ก์ง์ผ๋ก ์ถ์ ํ๋ **V(๋ชจํธํจ)รF(์ต์
ํ์ฌ ์ฉ์ด์ฑ)** ์ํธ์์ฉ์ ์(+) ํจ๊ณผ๋ฅผ ํต์ฌ์ผ๋ก ๊ฒ์ฆํ๊ณ , ์์กด์ ์กฐ๊ฑด๋ถ ๋ถ์์ ๋ฒ๋ฆฌ๊ณ (๊ฒ์ด ์ ๊ฑฐ) ๊ณ์ธต ๊ตฌ์กฐ(๋ฒค์ฒโ์๋ธ๋๋ฉ์ธโ์ฐ์
)๋ก ๋ถ์ฐ์ ์์ ํํ๋ ์ต์ ์คํ ์ฌ์์ผ๋ก ์ ๋ฆฌํ์ต๋๋ค.
**๊ฐ์ฅ ๋๋๋ ์ :**
์์กด ํธํฅยทํ๋ณธ ๋ถ๊ท ํยท์ํ๋ณธ(ํํ
) ๋ฌธ์ ๋ฅผ ํ๊บผ๋ฒ์ ๋ค๋ฃจ๊ธฐ ์ํด **๋ณต์กํ ํด์ ๋/GP ์ค๊ณ์์ โ๋์ค์ ๋ฐ๋ก ๋๋ฆด ์ ์๋โ ๋จ์ ์ด์ง ๋ก์ง(์ฐ๋ น๋ณ ๋ฒ ์ด์ค๋ผ์ธ + VรF)**์ผ๋ก ๊ณผ๊ฐํ ์ถ์ํ๋ฉด์๋, ์ต์
์คํ๊ฐ๋ฅ์ฑ์ด๋ผ๋ ์ด์์ ๊ฐ๋
์ ์ด๋ก โ์ค์ฆ ๊ฐ ๊ต๋ ๋ณ์๋ก ์ ์งํ ๊ฒฐ์ ์ด ๋งค์ฐ ์ธ์์ ์ด์์ต๋๋ค.
### [gpt6](https://chatgpt.com/c/6915a3c1-7b04-8327-91a3-4bdf78469153)
# [[2025-11-16]]
**Before:**
```
thesis/
โโ 1๐๏ธ/
โโ 2๐ป/
โโ 3๐ผ๏ธ/
โโ 4๐๏ธ/
โโ 5๐/strategic_ambiguity/01~06/ (33๊ฐ ํ์ผ)
```
**After:**
```
thesis/
โโ 1๏ธโฃ_INPUT/ (data, references, sketches)
โโ 2๏ธโฃ_PRODUCTION/ (Theory, Empirics_Early, Empirics_Later, Discussion)
โ โโ ๊ฐ ์น์
: draft.md + run.py + TO_XXX.txt
โโ 3๏ธโฃ_OUTPUT/ (figures, tables, paper.pdf)
โโ STATUS.md
โโ _ARCHIVE_5๐/ (์๋ณธ ๋ณด์กด)
```
# [[2025-11-19]]
- ๋ฉํฐ๋ฒ์ค ๊ตฌํ ํนํ V๋ฅผ customer๊ธฐ์ค, technology๊ธฐ์ค์ผ๋ก
-