# Promise Precision and Venture Funding
**π μμ μ§νλΆ**: `../../μΌλμκ΅°/` (μΌμΌ μν μΆμ )
**ποΈ μ ν¬ λ³ΈλΆ**: μ΄ ν΄λ (μ΅μ’
κ²°κ³Όλ¬Ό)
---
## 1. Hypotheses
**H1 (Early Stage - Short-term Cost):** Ξ±β < 0
π΅βπ« Vague promises hurt at first β Lower initial funding
**H2 (Later Stage - Long-term Benefit):** Ξ²β > 0
π΅βπ« Vague promises benefit later β Higher survival probability
---
## 2. Data
### Source
Longitudinal data with company descriptions and funding data at early and later stages from venture databases (Pitchbook, Crunchbase, or similar).
### Sample Structure
* **Temporal**: Early-stage investments β Later-stage outcomes
* **Cross-section**: Technology ventures with detailed descriptions
* **Panel**: Same firms tracked across funding rounds
* **Target N**: ~30-75 firms with complete data
### Key Variables
| Variable | Measurement | Role |
|----------|-------------|------|
| π΅βπ« Vagueness | Inverse of linguistic certitude (LIWC) in company description | Independent |
| π° Early_Funding | Funding amount at early stage ($ millions) | Dependent (Model 1) / Control (Model 2) |
| π― Later_Success | Binary: 1 if raised later-stage funding, 0 otherwise | Dependent (Model 2) |
| Team_Size | Number of employees at early stage | Control |
| Prior_Exit | Founder has previous exit (binary) | Control |
| Sector | Industry category | Control |
---
## 3. Models
### Model 1: Early-Stage Funding Amount (OLS)
```
π° Early_Funding_i = Ξ±β + Ξ±β Β· π΅βπ«Vagueness_i + Controls + Ξ΅_i
```
**Expected:** Ξ±β < 0 (vagueness β less initial funding)
### Model 2: Later-Stage Success (Logistic)
```
logit(π― Later_Success_i) = Ξ²β + Ξ²β Β· π΅βπ«Vagueness_i
+ Ξ²β Β· π°Early_Funding_i + Controls + Ξ΅_i
```
**Expected:** Ξ²β > 0 (vagueness β better survival, controlling for early funding)
---
## 4. Expected Patterns
### Pattern A: Early Stage (Short-term Cost)
```
Funding β
|
|\
| \
| \_____
|____________ π΅βπ« Vagueness β
Precise Vague
```
**Interpretation:** Vague descriptions β lower early-stage funding
### Pattern B: Later Stage (Long-term Benefit)
```
Success β
| ____/
| /
| /
| /
|/____________ π΅βπ« Vagueness β
Precise Vague
```
**Interpretation:** Vague descriptions β higher later-stage success rate
---
## 5. Analysis Pipeline
### νμ΄νλΌμΈ μμΉ
```
code/
βββ 01_process_company_data.py (λ°μ΄ν° μΆμΆ & μ μ )
βββ 02_process_deal_data.py (νλ© λ°μ΄ν° μ²λ¦¬)
βββ 03_create_panel.py (ν¨λ ꡬμ±)
βββ 04_run_analysis.py (Model 1 & 2)
βββ 05_create_deliverables.py (Tables & Figures)
```
### λ¨κ³
1. **Data Prep**: Extract funding records, compute vagueness scores
2. **Model 1**: OLS regression (early funding ~ vagueness)
3. **Model 2**: Logistic regression (later success ~ vagueness + early funding)
4. **Visualization**: Create Pattern A & B with actual data
5. **Robustness**: Sector effects, alternative vagueness measures
---
## 6. Deliverables
| Item | μμΉ | μ€λͺ
|
|------|------|------|
| **Table 1** | `output/table1_descriptive.csv` | Descriptive statistics |
| **Table 2** | `output/table2_model1.csv` | Model 1 results (early stage) |
| **Table 3** | `output/table3_model2.csv` | Model 2 results (later stage) |
| **Figure 1** | `output/figure1_early.png` | Vagueness β Early funding |
| **Figure 2** | `output/figure2_later.png` | Vagueness β Later success |
---
## π 견리μ¬μ μν μμ
λ²
μ΄ μ°κ΅¬λ **μΌλμκ΅° ν΄λ**μμ μΌμΌ μνμΌλ‘ μ§νλ©λλ€:
```
μμΉ¨ (θ¦)
β
μΌλμκ΅°/μ ν¬μΌμ§.md (κ³ν)
β
μμ
(ε© β ζ β ηΎ©)
β
μΌλμκ΅°/1_ε©/ (ChatGPT νλ‘ν νμ
)
μΌλμκ΅°/2_ζ/ (Claude μ κ΅ν)
μΌλμκ΅°/3_ηΎ©/ (Gemini κ²μ¦)
β
β
κ²μ¦ μλ£
β
μ΄ ν΄λ (empirics/)λ‘ μ΄λ
β
code/ (μ΅μ’
μ½λ)
output/ (μ΅μ’
κ²°κ³Ό)
```
**μΌμΌ μν¬νλ‘μ°**: `../../μΌλμκ΅°/README.md` μ°Έμ‘°
---
## π
3μ£Ό κ³ν
### Week 1 (10.25-10.31): Data + Model 1
**λͺ©ν**: Table 1, 2 μμ±
- Day 1-2: λ°μ΄ν° νμ΄νλΌμΈ ꡬμΆ
- Day 3-4: Model 1 ꡬν
- Day 5-7: κ²μ¦ & Table 2
**μ°μΆ**: `output/table1*.csv`, `output/table2*.csv`
---
### Week 2 (11.01-11.07): Model 2 + Visualization
**λͺ©ν**: Table 3, Figure 1, 2 μμ±
- Day 8-10: Model 2 (Logistic)
- Day 11-12: μκ°ν
- Day 13-14: Robustness checks
**μ°μΆ**: `output/table3*.csv`, `output/figure*.png`
---
### Week 3 (11.08-11.15): Paper
**λͺ©ν**: λ
Όλ¬Έ μ΄κ³
- Day 15-17: Introduction, Theory, Method
- Day 18-19: Results, Discussion
- Day 20-21: μ΅μ’
μ μΆ
**μ°μΆ**: `../theory/paper_draft.md`
---
## π― ν΅μ¬ μ°κ²°μ
### μ΄λ‘ μ κΈ°λ°
- **OIL Framework**: Ο* = max{0, β(V/4i) - 1}
- **Strategic Ambiguity**: When should ventures be vague?
- **Signaling Theory**: What do vague promises signal?
### Empirical Contribution
Promise precision has **non-monotonic effects**:
- **Short-term** (H1): Precision helps (credibility) β Ξ±β < 0
- **Long-term** (H2): Vagueness helps (flexibility) β Ξ²β > 0
---
## π¨ λ§ν λ
### μ°κ΅¬ μ€κ³ μ§λ¬Έ
β μ΄ νμΌ μ¬λ
### μΌμΌ μμ
λ§ν
β `../../μΌλμκ΅°/README.md`
### μ½λ λ¬Έμ
β `code/PIPELINE_GUIDE.md`
---
**"μ μκ²λ μμ§ 12μ²μ λ°°κ° μμ΅λλ€"**
**μ΄ workflowλ μ°λ¦¬μ μ§λμ
λλ€** πΊοΈ