์ด์ œ ์ฃผ์ œ๋ฅผ **โ€œ์ฐฝ์—…๊ฐ€์˜ ์•ฝ์† ์„ค๊ณ„ + ํ”ผ๋ณดํŒ…(pivoting)โ€** ์œผ๋กœ ๊ณ ์ •ํ•œ ๋’ค, ์•ž์„œ ์ •์˜ํ•œ ๋‘ ๊ฐœ์˜ ํ…œํ”Œ๋ฆฟ ๊ตฌ์กฐ (**์ด๋ก 10์‹ค์ฆ90**, **์ด๋ก 90์‹ค์ฆ10**) ์„ ๊ฐ€์žฅ ์ง๊ด€์ ์œผ๋กœ ๋Œ€๋น„ํ•  ์ˆ˜ ์žˆ๋„๋ก โ€œโœณ๏ธ ์š”์•ฝ์  ๊ตฌ์กฐ ํ…œํ”Œ๋ฆฟ(ํ•œ๋ˆˆ์— ๋ณด๊ธฐ)โ€ ๋ฒ„์ „์„ ๊ฐ๊ฐ ์ œ์‹œํ•˜๊ณ , ๊ทธ ์ฐจ์ด๋ฅผ ํ•œ๋ˆˆ์— ๋ณผ ์ˆ˜ ์žˆ๋Š” ๋น„๊ตํ‘œ๋กœ ์ •๋ฆฌํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค. --- # ๐Ÿš€ ์—ฐ๊ตฌ ์ฃผ์ œ **โ€œ์ฐฝ์—…๊ฐ€์˜ ์•ฝ์† ์„ค๊ณ„์™€ ํ”ผ๋ณดํŒ… ์ „๋žต(Entrepreneurial Promises and Strategic Pivoting)โ€** --- ## โœณ๏ธ [A] ์ด๋ก 10์‹ค์ฆ90 ํ…œํ”Œ๋ฆฟ _Theoryโ€‘lite, Empiricsโ€‘heavy โ€” ์‹ค์ฆ ์ค‘์‹ฌ_ ``` Title: The Optimal Ambiguity of Entrepreneurial Promises under Uncertainty: Empirical Evidence from Startup Pivoting Decisions 1. INTRODUCTION (10%) โ€ข Pitch: Why ambiguous promises matter when startups pivot. โ€ข Research gap: ๋ถ€์กฑํ•œ empirical evidence linking communication & pivot. โ€ข Contribution: simple theoretical logic โ†’ large empirical test. 2. MINI-MODEL (10%) โ€ข Parameters: ฮธ (uncertainty), r (resource dependence) โ€ข Decision: ฮ” (promise specificity) โ€ข Objective: maximize expected funding โ€“ loss of flexibility ฮ”* = f(ฮธ,r) โ€ข Theorem summary: ฮธโ†‘ โ†’ ฮ”*โ†“ (๋ชจํ˜ธํ•œ ์•ฝ์† ์ฆ๊ฐ€) rโ†‘ โ†’ ฮ”*โ†‘ (๋ช…ํ™•ํ•œ ์•ฝ์† ์ฆ๊ฐ€) โ€ข Derived hypotheses: H1โ€“H3 from model sign structure. 3. DATA & VARIABLES (25%) โ€ข Data: PitchBook texts, funding histories, pivot events. โ€ข Vagueness Index (text embedding), Pivot indicator, Uncertainty metrics. 4. EMPIRICAL MODEL (30%) โ€ข Logistic / panel regression of Pivot ~ Promise specificity ร— uncertainty. โ€ข Endogeneity control (IV: peer-average vagueness). โ€ข Sensitivity / robustness checks. 5. RESULTS & ANALYSIS (20%) โ€ข Findings: moderate vagueness โ†’ higher pivot success. โ€ข Visualizations of invertedโ€‘U relation. 6. DISCUSSION & IMPLICATIONS (5%) โ€ข Theoretical linkage back to model. โ€ข Implications for entrepreneurial communication strategies. 7. CONCLUSION (โ‰ˆ0โ€“5%) โ€ข Summary, limitations, future work. ``` > **ํ•ต์‹ฌ:** โ€œ๋ชจ๋ธ์€ ๊ฐ€์„ค ์ƒ์„ฑ ๋„๊ตฌ์ผ ๋ฟโ€ โ†’ โ€˜๋ฐ์ดํ„ฐ๊ฐ€ ์ฃผ์—ฐ, ์ด๋ก ์€ ๋ฐฉํ–ฅ์„ฑ๋งŒ ์ œ์‹œโ€™. --- ## โœณ๏ธ [B] ์ด๋ก 90์‹ค์ฆ10 ํ…œํ”Œ๋ฆฟ _Theoryโ€‘heavy, Empiricsโ€‘light โ€” ๋ชจ๋ธ ์ค‘์‹ฌ_ ``` Title: A Theoretical Model of Entrepreneurial Promise Design and Strategic Pivoting 1. INTRODUCTION (10%) โ€ข Why promises & pivots are central to entrepreneurial dynamics. โ€ข Gap: lack of formal modeling of communication-based adaptability. โ€ข Contribution: optimization model integrates uncertainty & pivot cost. 2. MODELING FRAMEWORK (30%) โ€ข Parameters: ฮธ (market uncertainty), ฯ† (pivot cost), r (resource dependence) โ€ข Decision variables: ฮ” : promise specificity / ฮต : pivot threshold โ€ข Objective: Maximize U = FundingGain(ฮ”,r) โ€“ Loss(ฮ”,ฮธ) โ€“ PivotCost(ฮต,ฯ†) โ€ข Boundary conditions, rationality assumptions. 3. THEORETICAL ANALYSIS (35%) โ€ข Lemma 1: Expected pivot probability โ†‘ as ฮ”โ†“, ฮธโ†‘. โ€ข Theorem 1: Lower ฮธ โ†’ more specific promises (ฮ”*โ†‘). โ€ข Theorem 2: Higher pivot cost ฯ† โ†’ fewer pivots (ฮต*โ†‘). โ€ข Corollary: Optimal ambiguity mediates between adaptability & credibility. โ€ข Proof outlines and intuitive discussion. 4. EMPIRICAL ILLUSTRATION / CALIBRATION (10%) โ€ข Simple descriptive test with 200 startup pitches. โ€ข Directional consistency check with text-inferred vagueness and pivot events. โ€ข No strict causal estimation; qualitative validation only. 5. IMPLICATIONS (10%) โ€ข Theoretical: bridges entrepreneurship & OM under uncertainty. โ€ข Managerial: guidelines for balancing clarity vs flexibility in promises. 6. CONCLUSION (5%) โ€ข Summary of analytical insights; future empirical expansion. ``` > **ํ•ต์‹ฌ:** โ€œ์‹ค์ฆ์€ ์กด์žฌ ์ฆ๋ช… ์ˆ˜์ค€โ€ โ†’ โ€˜๋ชจ๋ธ์ด ์ฃผ์—ฐ, ๋ฐ์ดํ„ฐ๋Š” ๋ณด์กฐ์  ์ฆ๋ช…โ€™. --- ## ๐Ÿ“Š ๋‘ ํ…œํ”Œ๋ฆฟ ๋น„๊ตํ‘œ |ํ•ญ๋ชฉ|**์ด๋ก 10์‹ค์ฆ90**|**์ด๋ก 90์‹ค์ฆ10**| |---|---|---| |**์—ฐ๊ตฌ ํ•ต์‹ฌ**|์‹ค์ฆ์  ๊ฒ€์ฆ ์ค‘์‹ฌ (๋ฐ์ดํ„ฐโ†’ํŒจํ„ดโ†’์ด๋ก  ์—ฐ๊ฒฐ)|์ด๋ก ์  ๋ชจํ˜• ์ค‘์‹ฌ (๋ชจ๋ธโ†’์ •๋ฆฌโ†’์ง๊ด€ ์—ฐ๊ฒฐ)| |**์ด๋ก  ์—ญํ• **|๊ฐ€์„ค ์ƒ์„ฑ ๋„๊ตฌ (๋ถ€ํ˜ธ ๊ด€๊ณ„๋งŒ ์ œ์‹œ)|์—ฐ๊ตฌ ๋ณธ์ฒด (๊ณต์‹ํ™”, ์ฆ๋ช…, ๊ฒฝ๊ณ„์กฐ๊ฑด ํฌํ•จ)| |**์‹ค์ฆ ์—ญํ• **|์ฃผ์š” ๋ถ„์„ (๋Œ€๊ทœ๋ชจ ํ…์ŠคํŠธใƒปํŒจ๋„ ๋ฐ์ดํ„ฐ)|๋ณด์กฐ ๊ฒ€์ฆ (์ž‘์€ ์ƒ˜ํ”Œ, ๋ฐฉํ–ฅ์„ฑ ์ผ์น˜ ํ™•์ธ)| |**๋ฐ์ดํ„ฐ ๋น„์ค‘**|60โ€“70% ๋ณธ๋ฌธ (๋ชจํ˜• ์„ค๋ช…์€ ์ดˆ๋ฐ˜ only)|10โ€“15% (์š”์•ฝ ํ†ต๊ณ„ยท์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜ ์ˆ˜์ค€)| |**Theorem ์‚ฌ์šฉ**|์ง๊ด€์  sign ์ˆ˜์ค€๋งŒ: โ€œโ†‘โ†’โ†“โ€|์ •์‹ ์ˆ˜ํ•™ ์ •๋ฆฌ์™€ ์ฆ๋ช… (lemma/theorem/corollary)| |**๊ฐ€์„ค(Hypothesis)**|๊ฒฝํ—˜๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์ •์‹ ๊ฒ€์ฆ|์ด๋ก ์  ํŒŒ์ƒ(derivation) ํ˜•ํƒœ ์ œ์‹œ| |**๋ฌธ์ฒด ํ†ค & ๋ชฉ์ **|โ€œ์šฐ๋ฆฌ๋Š” ๋ณด์—ฌ์ค€๋‹ค(we find)โ€|โ€œ์šฐ๋ฆฌ๋Š” ์ฆ๋ช…ํ•œ๋‹ค(we prove)โ€| |**์ ํ•ฉ ์ €๋„ ์˜ˆ์‹œ**|_Management Science (Empirical OM)_, _Organization Science_, _SMJ_|_Operations Research_, _MS (Modeling Track)_, _Manufacturing & Service OM_| |**๋…ผ๋ฌธ ๊ธธ์ด ๊ตฌ์กฐ ๋น„์œจ**|Introductionโ€ฏ10 โ€“ Theoryโ€ฏ10 โ€“ Data/Empiricsโ€ฏ70 โ€“ Discussionโ€ฏ10|Introductionโ€ฏ10 โ€“ Theory/Modelโ€ฏ65 โ€“ Empiricsโ€ฏ10 โ€“ Discussionโ€ฏ15| |**๊ฒฐ๊ณผ ํ•ด์„ ๋‹จ์œ„**|ํ†ต๊ณ„์  ์œ ์˜์„ฑ, ๊ณ„์ˆ˜ ๋ถ€ํ˜ธ|ํŒŒ๋ผ๋ฏธํ„ฐ ๋ณ€ํ™”์˜ ์ •์„ฑ์  Comparative statics| |**๋…์ž ๋Œ€์ƒ**|๊ฒฝํ—˜์  ์—ฐ๊ตฌ์ž, ๋ฐ์ดํ„ฐ ๊ณผํ•™โ†’OM ๊ต์ฐจ ๊ด€์‹ฌ์ž|๋ชจ๋ธ๋ง ์—ฐ๊ตฌ์ž, ๋ถˆํ™•์‹ค์„ฑ ์ตœ์ ํ™” ์ด๋ก ๊ฐ€| |**์ง๊ด€์ ์ธ ๋น„์œ **|์‹คํ—˜์‹ค์—์„œ โ€œ๋ชจํ˜•์„ ๊ฒ€์ฆํ•˜๋Š” ๋…ผ๋ฌธโ€|์—ฐ๊ตฌ์‹ค ์น ํŒ์—์„œ โ€œ๋ชจํ˜•์„ ๊ตฌ์ถ•ํ•˜๋Š” ๋…ผ๋ฌธโ€| |**์š”์•ฝ ๋ฌธ์žฅ ์˜ˆ์‹œ**|โ€œ์šฐ๋ฆฌ๋Š” ์‹ค์ œ ํ”ผ์น˜ ๋ฐ์ดํ„ฐ์—์„œ ๋ชจํ˜ธ์„ฑ์˜ ์—ญUํ˜• ํšจ๊ณผ๋ฅผ ๋ฐœ๊ฒฌํ•œ๋‹ค.โ€|โ€œ์šฐ๋ฆฌ๋Š” ๋ชจํ˜ธ์„ฑ์ด ์กด์žฌํ•  ๋•Œ ๊ท ํ˜•์ ์ด ํ•˜๋‚˜ ์กด์žฌํ•จ์„ ์ฆ๋ช…ํ•œ๋‹ค.โ€| --- ## โœ… ์š”์•ฝ |ํฌ์ปค์Šค|๋น„์œ |๋…ผ๋ฌธ์˜ ํ•ต์‹ฌ ๋ฉ”์‹œ์ง€| |---|---|---| |**์ด๋ก 10์‹ค์ฆ90**|โ€œํ˜„์žฅ ๋ฐ์ดํ„ฐ๋กœ ์ด๋ก ์  ์ง๊ด€์„ ์‹œํ—˜ํ•˜๋Š” ์‹คํ—˜๊ฐ€โ€|ํ˜„์‹ค์˜ ์ฐฝ์—…์ž ์•ฝ์†๊ณผ ํ”ผ๋ด‡์„ **์ •๋Ÿ‰์ ์œผ๋กœ ๊ฒ€์ฆ**| |**์ด๋ก 90์‹ค์ฆ10**|โ€œ๋ฐฑ๋ณด๋“œ๋ฅผ ์ฑ„์šฐ๋ฉฐ ์ˆ˜ํ•™์ ์œผ๋กœ ํ˜„์ƒ์„ ๊ตฌ์กฐํ™”ํ•˜๋Š” ์ด๋ก ๊ฐ€โ€|์ฐฝ์—…์ž์˜ ์ปค๋ฎค๋‹ˆ์ผ€์ด์…˜๊ณผ ํ”ผ๋ด‡์„ **์ˆ˜๋ฆฌโ€‘๋…ผ๋ฆฌ์ ์œผ๋กœ ์ •์‹ํ™”**| --- > **์š”์•ฝ์  ํ†ต์ฐฐ:** > ๊ฐ™์€ ์ฃผ์ œ(์ฐฝ์—…๊ฐ€์˜ ์•ฝ์† ์„ค๊ณ„โ€ฏ+โ€ฏํ”ผ๋ณดํŒ…)๋ฅผ ๋‹ค๋ฃจ๋”๋ผ๋„ > **์ด๋ก 10์‹ค์ฆ90**์€ โ€œ๋ฐ์ดํ„ฐ๊ฐ€ ๋งํ•˜๋Š” ํ–‰๋™ํŒจํ„ด์„ ๊ทผ๊ฑฐ๋กœ ๊ฐ€์„ค์„ ๊ฒ€์ฆโ€ํ•˜๊ณ , > **์ด๋ก 90์‹ค์ฆ10**์€ โ€œ๋ชจํ˜ธ์„ฑ๊ณผ ํ”ผ๋ณดํŒ…์˜ ์ธ์„ผํ‹ฐ๋ธŒ๋ฅผ ์ด๋ก ์ ์œผ๋กœ ๊ทœ๋ช…โ€ํ•˜๋ฉฐ, > ์‹ค์ฆ์€ ๋‹จ์ง€ **๋ชจ๋ธ์˜ ๋ฐฉํ–ฅ์„ฑ์ด ํ˜„์‹ค๊ณผ ์ผ์น˜ํ•จ์„ ๋ณด์—ฌ์ฃผ๋Š” ๋ณด์กฐ ์ˆ˜๋‹จ** ์œผ๋กœ ์“ฐ์ž…๋‹ˆ๋‹ค.