# 2025-08-08 promise-precision-evolution
ā”TOLTOL: Map 5-model progression to 3D space (stateĆdepthĆaction)
š§²ZULZUL: Freedom evolves from levelālimitationāflexibilityāprecision
ā $/time test:
Deliver? 3D visualization Ć Model clarity = ā
Sell? Management Science Ć Rigorous progression = ā
**Learning**: External dimensions (3D plot) reveal internal evolution (decision freedom)
## Integration from Existing Knowledge:
### From [[ā”toltol/people_analysis/]] (External patterns)
- Related person: [[ā”toltol/people_analysis/šŗļøatom(PCOā¬ļøā¬ļø)/charlie_fine.md]] - systematic optimizer
- Quick pattern: Number models 1-5, not creative names
### From [[š§²zulzul/ops4entrep/]] (Internal frameworks)
- Theory connection: [[š§²zulzul/ops4entrep/joker-framework.md]] - balance exploration/exploitation
- Deep principle: Promise precision = f(level, limitation, flexibility)
### From [[3_š
professionalize-processify/]] (Operations)
- Academic backing: [[3_š
/š«bayes/optimal-stopping.md]]
- Method: [[3_š
/āoperations/š¤prior(promise)/]]
## 8 TODO Items (from brown numbers):
1. [ā”] Fix notation: Ļ not "five", consistent throughout
2. [š§²] Map GaNS baseline clearly as Model 1 foundation
3. [ā”] Draw 3D progression plot: (0,0,0)ā(1,0,0)ā(2,0,0)ā(2,1,0)ā(2,1,2)
4. [š§²] Solve Model 3: Ļ* = {1 if VSD=max, 0.5 if VSDā«}
5. [š§²] Solve Model 4: μ* convergence when Ļāā
6. [ā”] Add convex d(Ļ) for Model 3b analysis
7. [š§²] Prove Model 5: optimal Ļ* = f(μ, c, VSD)
8. [ā”] Create table: Decision variables by model (0āĻāĻāμ,Ļāμ,Ļ)
## Model Evolution Summary:
### Model 1: Freedom-Level (ģģ -ģģ¤)
- State: (0,0,0) ā No decision variable
- P(success) exogenous
### Model 2: Freedom-Level Extended
- State: (1,0,0) ā Ļ ā [0,1]
- Promise level affects success
### Model 3: Finite/Limited (ģ ķ)
- State: (2,0,0) ā Branching: Sell vs Deliver
- Trade-off: d(Ļ) = delivery probability
### Model 4: Flexible (ģ ģ°)
- State: (2,1,0) ā Added depth dimension
- μ = prior mean for promise
### Model 5: Discrete/Precision (ģ“ģ°/ģ ė°ė)
- State: (2,1,2) ā Added action dimension
- Ļ = sample size optimization
- Cost: cĀ·ln(Ļ)