# 2025-08-08 promise-precision-evolution ⚔TOLTOL: Map 5-model progression to 3D space (stateƗdepthƗaction) 🧲ZULZUL: Freedom evolves from level→limitation→flexibility→precision → $/time test: Deliver? 3D visualization Ɨ Model clarity = āœ“ Sell? Management Science Ɨ Rigorous progression = āœ“ **Learning**: External dimensions (3D plot) reveal internal evolution (decision freedom) ## Integration from Existing Knowledge: ### From [[⚔toltol/people_analysis/]] (External patterns) - Related person: [[⚔toltol/people_analysis/šŸ—ŗļøatom(PCOā¬†ļøā¬‡ļø)/charlie_fine.md]] - systematic optimizer - Quick pattern: Number models 1-5, not creative names ### From [[🧲zulzul/ops4entrep/]] (Internal frameworks) - Theory connection: [[🧲zulzul/ops4entrep/joker-framework.md]] - balance exploration/exploitation - Deep principle: Promise precision = f(level, limitation, flexibility) ### From [[3_šŸ…professionalize-processify/]] (Operations) - Academic backing: [[3_šŸ…/šŸ«€bayes/optimal-stopping.md]] - Method: [[3_šŸ…/āœ‹operations/šŸ¤™prior(promise)/]] ## 8 TODO Items (from brown numbers): 1. [⚔] Fix notation: φ not "five", consistent throughout 2. [🧲] Map GaNS baseline clearly as Model 1 foundation 3. [⚔] Draw 3D progression plot: (0,0,0)→(1,0,0)→(2,0,0)→(2,1,0)→(2,1,2) 4. [🧲] Solve Model 3: φ* = {1 if VSD=max, 0.5 if VSD≫} 5. [🧲] Solve Model 4: μ* convergence when Ļ„ā†’āˆž 6. [⚔] Add convex d(φ) for Model 3b analysis 7. [🧲] Prove Model 5: optimal Ļ„* = f(μ, c, VSD) 8. [⚔] Create table: Decision variables by model (0→φ→φ→μ,φ→μ,Ļ„) ## Model Evolution Summary: ### Model 1: Freedom-Level (ģžģœ -ģˆ˜ģ¤€) - State: (0,0,0) → No decision variable - P(success) exogenous ### Model 2: Freedom-Level Extended - State: (1,0,0) → φ ∈ [0,1] - Promise level affects success ### Model 3: Finite/Limited (ģœ ķ•œ) - State: (2,0,0) → Branching: Sell vs Deliver - Trade-off: d(φ) = delivery probability ### Model 4: Flexible (ģœ ģ—°) - State: (2,1,0) → Added depth dimension - μ = prior mean for promise ### Model 5: Discrete/Precision (ģ“ģ‚°/ģ •ė°€ė„) - State: (2,1,2) → Added action dimension - Ļ„ = sample size optimization - Cost: cĀ·ln(Ļ„)